
  
 

 
AS2001/AS2101 
Exoplanetary Science 
 
Dr Rose Waugh  



These notes contain all the important information presented within the lectures (the slides 
of which will also be made available). 
 
 

Section 1: What is an exoplanet? Where do they form from? How do we spot 
them? 

 
What is an exoplanet? 
It is not: 

• A star: so, no Hydrogen burning 
M < 0.08 Msun  (80 Mjup) 

• A brown dwarf: so, no Deuterium burning 
M < 0.01 Msun   (13 Mjup) 

 
 
Two options: 
1. Object that forms in a circumstellar disc 

- by-product of star formation 
- still needs to be a low-mass object (not another star) 

The problem with this definition is: what about free-floating planet-mass objects? (Rogue 
planets) 
 
2. A low-mass object that forms in a disc through planetesimal accumulation. 
This means the metallicity of planets is higher than that of the host star. 
This has other problems – sometimes the metallicity of stars and planets within a system are 
not as you might expect. 
 
 
Should all stars have planets? 
 
1. The nebular hypothesis (NH):  
Kant (1755) and Laplace (1796) asked the question of “what 
happens if a star forms for a rotating cloud of gas?” Their answer 
was: 
A collapsing protosolar nebula flattens as it rotates and planets 
condense within in disc. 
 
This method predicts that all stars should be born with planets. 
 
There were some objections to this theory. An example is James 
Clerk Maxwell in the 19th century who countered that: 

- the Sun rotates slowly but has >99% of the Solar System 
mass. 

- The planets contain 0.1% of the mass but >99% of the Solar System’s angular 
momentum. 



How then could the mass and angular momentum be separated? He proposed that the issue 
with the nebular hypothesis was that parts of the star’s disc rotate with different velocities, 
so Keplerian shear within the disc would prevent planet formation (or so he thought… and 
everyone believed him!) 
 
An alternative to this theory is: 
2. The tidal model: 
Jeans (1917) proposed that maybe a closer encounter of the Sun with another star created a 
tidal bulge from the Sun, that settled down into the planetary system. 
The problem with this is that it relies on stellar encounters, and these are rare! 
 
This method predicts that planetary systems should be rare. 
 

 
 
 
Who was right? Data from the Hubble Space Telescope in 
the 1990s showed protoplanetary discs silhouetted 
against the Orion Nebula. Kant and Laplace were right, we 
see protoplanetary discs, and with the new generations of 
telescopes we can get even more detailed images! 
 
 
 
Star formation in galaxies: 
 

• Planets are by-products of star formation. 
• Star formation occurs in spiral arms. 
• Stars form in molecular clouds. 

 
Molecular clouds typically have the following properties: 

• Densities: 10-19 to 10-16  kg m-3 
• Sizes: few 10’s of parsecs : few 1017 m 
• Mass: 1000’s to 105 Msun 

 
A molecular cloud this size must be reduced down eventually to a star like the Sun, which 
has the following properties: 

• Densities: 1000 kg m -3 
• Size: 7x108 m 

 
We can now resolve the structure of these discs with telescopes like ALMA and in doing so it 
is clear that there is a wide variety in disc structure for example: 

Credit: NASA, ESA (HST Orion Treasury Project Team)  



• gaps, 
• rings, 
• hollowed out centres, 
• extended discs, 
• compact discs… 

 
Stages of star formation: 
Prior to formation, there are molecular cloud 
within the Galaxy and experiencing the 
galactic dynamics. Eventually this cloud 
experiences gravitational collapse to form a 
protostar. Protostars can be classified into 4 
classes: 

• Class 0  -- youngest 
• Class 1 
• Class 2 (aka TTauri) 
• Class 3  -- oldest 

 
 
Class 0: The cloud is collapsing because 𝐸!"#$%"&' + 𝐸(%&)	+!",!"( < 0 (see later). Gas and 
dust are infalling onto the low-mass protostar core, and we can detect in far IR and mm 
(~100mm to mm) but not optically. 
Class 1 (Class I): The dense centre that is now about the size of a stellar mass object. The 
accreting (infalling) material collides with itself as it falls, and so radiates energy. There is 
now formation of a protostellar disc, and the object is visible in IR (~10mm). 
Class 2 (Class II) / TTauri: The star is still contracting and is surrounded by a disc, and it may 
have outflows. Gas is accreting onto the star i.e. there is disc accretion onto a pre-main 
sequence (PMS) star. The object is optically visible with a disc (~0.6mm). 
Class 3 (Class III): The gas is now gone but the dust remains. We now can no longer see the 
disc. Planets are forming and the object is now a pre-main sequence (PMS) star of final 
mass. The star is optically visible but with no disc. 
 
We aren’t entirely sure how the disc disperses; it may be because of the stellar wind (but 
there is a lot we don’t know!). 
 

 
 



In this course we will talk about planets around solar mass stars because for high mass stars 
it can be harder to observe the stars. Planets form within protoplanetary discs around 
young stars. Understanding the formation and evolution of these discs is central to a 
theoretical understanding of extrasolar planets. 
 
Initiating core collapse: 
To collapse, the total gravitational energy pulling the cloud in must be greater than the 
kinetic (i.e. thermal) energy pushing out. To form a star, a cloud with radius R and 
temperature T must have a mass M great enough to satisfy the condition for collapse. This 
critical mass MJ is named the Jeans mass (after Sir James Jeans, who figured it out first). 
 
 
 
 
 
 
 
 
 
 
 
 
Disc formation: 
Molecular clouds rotate because they orbit the galaxy (in ~3x108 yr). Because of this, they 
contain some angular momentum J. This is unlikely to be zero because there are lots of bulk 
motions. Angular momentum is conserved during collapse. 
 
Angular momentum per unit mass (“specific angular momentum”) can be calculated by: 
 
 
During collapse the radius decreases and thus vrot increases 
 
A “centrifugal barrier” halts the collapse: at some point, v increases sufficiently to the halt 
collapse. 
 
 
The collapse is halted perpendicular to J, which leads to disc formation. Later there will be 
planet formation. So how much do molecular clouds shrink when they form a star + disc? 
 
Worked example: 
A cloud with mass M = 1 Msun , radius R = 0.1 pc is rotating with the galactic rotation period 
P = 250 Myr (i.e. it’s rotation matches the galaxy’s).  
What is the orbital velocity of the material within the cloud? 

 
 
What is its angular momentum per unit mass at outer edge? 
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Now we can calculate the radius that the cloud will shrink to (remember the centrifugal 
barrier which halts the collapse?) 

 
In other words, r ~ 2.9 AU, this is about the distance from the Sun to the edge of the 
asteroid belt. A small amount of mass must move out, carrying away angular momentum, to 
allow most of the mass to move in and form the star. 
 
Finding planets: 
Why are planets so hard to find, since planets are the by-product of star production, they 
should be everywhere… 
 
At visible wavelengths, planets shine by reflected starlight. 
Inverse square law tells us that planet at distance a receives the flux:  

 
An observer at distance, d, with d >> a receives flux from the star of: 

 
The same observer also receives flux from the planet of: 

 
p < 1 is the geometric albedo of the planet and is the fraction of the flux reaching the planet 
that is reflected from the surface. 
 
The ratio of fluxes received from planet and star is:  

 
 
As some examples: Venus, Earth and Jupiter have: 

• visual geometric albedos p = 0.67, 0.37, 0.52;  
• radii Rp = 6052, 6371, 69911 km; 
• orbital distances a = 1.082x108, 1.496x108, 8.157x108 km. 

 
Venus has 

 
Q0. Do the other two yourself below. Which planet is brightest to an interstellar observer? 
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But this flux ratio just calculated assumes we are looking directly at the planet's dayside, 
which would put the planet directly behind the star. We need to put in some term to tell us 
about the phase of the planet… The phase function corrects for partial illumination as a 
function of the phase angle subtended at the planet by the star and the observer. 
 

 
 
Ultimately this is an approximation 
and not perfect because it can vary 
with planet/moon composition, but it is still useful. 
The phase function doesn’t account for a planetary atmosphere. Planets like Venus with an 
atmosphere can still be seen even when alpha = 180 i.e. on their night-side. This means their 
phase function would not equal 0 at this angle (whilst it would for a planet like Mercury!). 
 
Looking in infrared: 
Planets are warm due to the starlight they absorb, but they are still cooler than the star. 
They re-emit that starlight as thermal/IR light and this planetary thermal emission can >> 
optical reflected light. 
Of course, the star also has IR emission… Even if we can resolve the star from the planet, 
there isn’t much contrast so we might want to know what contrast would we see in the IR? 
The thermal flux received from an object with temperature T at frequency n = c / l is 
described by 

 
(Solid angle = surface area of object/distance from star) 
 
We can obtain the brightness from the Planck function: 

 
At thermal IR frequencies, ℎ𝜈	 << 	𝑘𝑇 (i.e the photon energy is much less than the mean 
kinetic energy of the particles within the object), so we can use the Rayleigh-Jeans 
approximation: 

 
 
Hence, 
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So, the brightness is proportional to the temperature and 1/wavelength2. 
 
 
Equilibrium Temperature: 
The equilibrium temperature of a planet is the temperature that a planet would be at if it 
was in radiative equilibrium. Usually, we assume that the planet radiates as a black body 
that is only heated by its host star. Aside: Can you think of any reason why these 
assumptions might not be perfect? 
We wish to get an equation that would allow us to calculate the equilibrium temperature of 
planets. Start with: 
 
Power input (from the star) = Power output (from the planet’s reflected starlight + thermal 
radiation) 

 
Remember that power is luminosity, which we can calculate from the flux received from the 
star. And remember the equation 𝑃 = 𝜖	𝜎	𝐴	𝑇∗. ? 
 
The power of the star is given by 𝐿∗ = 𝜖	𝜎	𝑇∗.	𝐴𝑟𝑒𝑎 = 𝜎𝑇∗.(4𝜋𝑅∗/) (where we assume the 
star is a perfect blackbody so 𝜖 = 1) and the stellar flux that reaches the planet then is 
𝐹!" =

0∗
.1&"

 where a is the distance between the star and planet. 
 
The power outputted from the planet is 𝐿%$2'$3#$, + 𝐿#4$%5&'. 
 
The power reaching the planet is 𝐹!"(𝜋𝑟/), where r is the radius of the planet, but not all of 
this is reflected. The reflected power is given by: 

𝐿%$2'$3#$, = 𝐹!"(𝜋𝑟/)𝐴 
Where A is the bond albedo and tells us about the fraction of the power that gets 
reradiated into space. It has a value between 0 and 1. Something with a bond albedo of 1 
reflects everything back into space, whilst an object with a bond albedo of 0 reflects 
nothing. 
 
The planet in this scenario is in thermal equilibrium. So, the power in = power out. If  

𝐿%$2'$3#$, = 𝐹!"(𝜋𝑟/)𝐴 
gives the reflected power, then whatever remains must be radiated away i.e. the radiated 
power: 

𝐿%&,!&#$, = 𝐿!" − 𝐿%$2'$3#$, = 𝐹!"(𝜋𝑟/) − 𝐹!"(𝜋𝑟/)𝐴 = 𝐹!"(𝜋𝑟/)(1 − 𝐴). 
We can also calculate this thermally radiated power from the equation 𝑃 = 𝜖	𝜎	𝐴	𝑇∗., again 
assuming a perfect blackbody. 

𝐿%&,!&#$, = 𝜎(4𝜋𝑟/)𝑇6. 
 



Now we can calculate the equilibrium temperature of the planet, Tp, by setting these two 
expressions for𝐿%&,!&#$,  to be equal: 
 

𝐹!"(𝜋𝑟/)(1 − 𝐴) = 𝜎(4𝜋𝑟/)𝑇6. 
 
And using the expression for 𝐹!" at the top of this derivation: 
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This is the temperature that the planet must have if it radiates and reflects away the same 
amount of power as it receives from the host star. 
 
Note that Teq is independent of the planet size r! 
 
 
 
Worked example 2: 
a) Estimate Jupiter’s equilibrium temperature, given: 

• T* = 5780 K 
• R* = 6.96 x 105 km 
• a   = 8.157 x 108 km 
• AJ = 0.343 

 

 
b) Given Jupiter’s equilibrium temperature TJ = 107 K, calculate the ratio of fluxes received 
from Jupiter and the Sun, as seen at interstellar distance d. 
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In visible light, the ratio is 10-9 so this is far more favourable! 
 
Q1. An exoplanet has an equilibrium temperature of 180K and orbits a K type star with 
radius R=0.8Rsun and effective temperature 5000K. The planet is observed to orbit at a 
distance of 0.9AU. Calculate the albedo of the planet. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q2: What are the equilibrium temperatures for the following bodies in the solar system? 
Given T* = 5780 K and R* = 6.96 x 105 km. 
 

Body Bond albedo, A Distance from Sun, a 
Mercury 0.088 0.3871 AU 
Venus 0.76 0.7233 AU 
Earth 0.306 1 AU 
Moon 0.11 1 AU 
Mars 0.25 1.5273 AU 
Enceladus 0.81 9.5AU 
Pluto 0.41 39.5294 AU 
Eris 0.99 67.6681 AU 

Which of these celestial bodies reflect a lot of sunlight back into space, and which must 
reradiate a lot of sunlight? 
  



A reminder on angular separation: 
The definition of a parsec is the distance at which the mean radius of the Earth’s orbit 
subtends an angle of one second of arc. 

 
In other words: one AU subtends a parallax of 1 arcsecond at a distance of one parsec. 

 
Q3. To an observer 10 pc away, what is the angular separation of the Earth and the Sun? 
 
 
From observational techniques you have met the equation: 

. 
The atmospheric seeing from a really good site on a really good night is about 0.5” and the 
diffraction limit of a telescope of diameter D observing at wavelength 𝜆 is then given by the 
above equation. 
 
Worked example 3: 
Ignoring atmospheric seeing, how big a telescope is needed to resolve Earth from the Sun at 
a distance 10 pc and wavelength 500 nm? 

 
 
Summary: 
The planet/star flux ratio in reflected light at phase angle 𝛼 is:  

 
Planet equilibrium temperature depends on stellar temperature, bond albedo, stellar radius 
and distance: 

 
Thermal infrared planet/star flux ratio depends on the temperatures and areas of both 
bodies: 

 
The angular separation of star and planet in arcsec is orbital radius in AU divided by distance 
in pc. 
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Answers: 
Q0: Earth - 0.67 × 109: and Jupiter - 3.82 × 109:  
Q1: 0.47 
Q2:  

Body Bond albedo, A T 
Mercury 0.088 – reradiates lots 437.9K 
Venus 0.76 229.4K 
Earth 0.306 254.4K 
Moon 0.11 – reradiates lots 270.8K 
Mars 0.25 209.9K 
Enceladus 0.81 – highly reflective 59.7K 
Pluto 0.41 38.9K 
Eris 0.99 – highly reflective 10.7K 

Q3: 0.1 arcsec. 
 

Section 2: Exoplanetary 
Orbits 

 
This section covers the topics: 

• the common centre of 
mass, 

• the example of Jupiter 
and the Sun, 

• planetary orbits, 
• Kepler, 
• eccentric orbits, 
• orbital angular 

momentum, 
• orbital energy. 

 
Common centre of mass: 
A star and its planets orbit their common centre of mass – here we will consider only a 
single planet orbiting a single star. The orbit can be either 
circular or eccentric. An eccentric orbit is an elliptical 
one, where the semi-major axis is denoted by a and 
the semi-minor axis is denoted by b. 
 
 
 
The reflex orbital velocity of a star, also known as the radial velocity or Doppler velocity, 
refers to the speed at which a planet's host star moves in response to the gravitational 
influence of the planet orbiting around it. This motion about the centre of mass of the 
system creates a periodic shift in the star's spectral lines due to the Doppler effect, which 
we can detect. Since this redshift (when the star moves away from us) and blueshift (when 
the star moves towards us) is periodic, we can use this to infer the presence of an 
exoplanet. 

©	Raja	Lockey	

a 
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Let’s first think about this for a 
circular orbit, we want to 
know what the star’s reflex 
orbital velocity about the 
centre of mass: 
We can write down 
expressions for the velocities 
of both the planet and the star 
using: 

 
 
Using the conservation of momentum: 

  
And we can apply Kepler’s 3rd law: 

To get an expression for the star’s reflex orbital velocity about the centre of mass: 

 
 
Notes that this assumes.                         and thus             
 
Worked example 4: 
Jupiter has mass MJ = 0.0009543 Msun and orbits the Sun every P = 11.86 yr. Estimate the 
Sun’s reflex velocity around its centre of mass with Jupiter. 
 
Using Kepler’s 3rd Law and noting that Mp << M*: 
 
 
 
 
 
 
 
 
Then from conservation of angular momentum: 
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ASIDE: The Solar reflex motion due to Jupiter: 
Whilst we are interested in exoplanets in this 
course, our own Solar System can be a useful 
playground. We can observe the Sun’s reflex 
motion around its centre of mass due to the 
presence of Jupiter, and this is shown in the plot 
to the right. Calculating the synodic period of 
Jupiter seen from Earth gives: 

 
 
 
Worked example 5: 
Estimate the reflex velocity of a 1 solar-mass star with a Jupiter-mass planet in a 1-day orbit: 
 
For Jupiter we found:  

    
In this example our planet has a different period and therefore the planet would have a 
different velocity, Vp, to Jupiter. Otherwise, everything else is the same so we can scale our 
previous answer by the ratio of periods to the 1/3 power. This might be obvious to you, but 
if not, an explanation is given below: 
 
The velocity ratio for our new system is:  ;∗

;#
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And the ratio for Jupiter and the Sun from the previous example is: ;∗
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And these ratios should equal because 𝑉∗ =
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 and the mass ratios are the same for both 

systems, i.e. 
𝑉∗
𝑉6
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So, the velocity for a star with a Jupiter mass planet in a 1-day orbit would be: 

𝑉∗ = 𝑉6
𝑉∗=
𝑉6=

 

The hot-jupiter planet’s velocity is: 

𝑉6 =
2𝜋𝑎
𝑃  

And 𝑎 ∝ (𝑃/𝑀)7/>		so  

𝑉6 ∝
(𝑃/𝑀)

7
>

𝑃 = ;
𝑀
𝑃=

7/>

 

And we could get the same for Jupiter:  
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i.e. we can scale our previous answer by the ratio of periods to the 1/3 power: 

 
 

Hot Jupiters (small P) are a lot easier to detect using radial-velocity searches than cold ones! 
 
 
Kepler’s laws of planetary motion: 
 
1. Kepler’s First Law (Law of Ellipses): 
Kepler's first law states that the orbit of a planet around the Sun is an ellipse, with the Sun 
at one of the two foci. In other words, planets do not move in perfect circles but rather in 
elongated orbits where the Sun is slightly off-center. 
 
2. Second Law (Law of Equal Areas): 
Kepler's second law, also known as the law of equal areas, states that a line segment joining 
a planet and the Sun sweeps out equal areas during equal intervals of time. This means that 
a planet travels faster in the part of its orbit where it is closer to the Sun and slower when it 
is farther away. 
 
3. Third Law (Harmonic Law): 
Kepler's third law establishes a relationship between the orbital period of a planet, P, and 
the semi-major axis of its orbit, a. It can be expressed as: 

𝑃/ ∝ 𝑎> 
i.e., the square of the orbital period of a planet is directly proportional to the cube of the 
semi-major axis of its orbit. 
 
 
A reminder about reference frames: 
Last semester you had a lot of practice thinking about reference frames in the Special 
Relativity course. Hopefully you remember that reference frames are not specific to special 
relativity and are common in classical mechanics too. Reference frames are different ways 
of thinking about a problem. In the case of a planet orbiting a star, this could be from the 
point of view of the star (where the star is stationary), from the point of view of the planet 
(planet is stationary) or from the inertial frame. 

V⇤ = 12.46⇥ (11.86⇥ 365.25)1/3 = 203.2 m s�1



 
The planetary orbit is an ellipse with the 
star at one focus. The planet sweeps out 
equal area in equal time (angular 
momentum conservation). 
 
 
The planet is stationary at the focus and the 
star sweeps equal area in equal time. 
 
 
 
The star and planet both orbit around the 
centre of mass. 
 

 
Below are some useful relations for Keplerian orbits: 

 
 
The anatomy of an eccentric orbit: 

The image below shows an eccentric orbit where 
the symbols have the following meanings: 
 
• F1 and F2 are the focal points of the ellipse, and 
the star is at F1. 
• Semi-axes a, b 
• Eccentricity e:   
• Area of ellipse  
• Eccentric anomaly E 

Uses auxiliary circle 
• True anomaly 𝜈 

Periastron-Star-Planet 
• Planet-star distance 

Equation of an ellipse  
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Whilst you are not expected to memorise these equations, it is important that you know 
what all the terms in the equations are so that you can then apply these equations when 
you need to. 
 
Q0: Can you derive the expression for the planet-star distance, r, using trigonometry, given 
that the “string length” F1 to P to F2 is 
constant? 
 
 
Using we can calculate the 
planet-star distance at a few important points 
in the orbit: 
 

• Periastron (𝜈 = 0): 
 
 

• Apastron (𝜈 = 180o): 
 
 

 
• Semi-latus rectum (𝜈 = 90o): 

 
 

 
Q1: can you convince yourself that you can get these expressions for periastron, apastron 
and semi-latus rectum given the true anomaly values given? 
 
 
 
Kepler’s 2nd law (again): 
 
A planet moving through a small angle d𝜈 sweeps out 
area (1/2) r 2d𝜈 in time dt. Since this is a small angle, we 
can treat the shaded blue areas as triangles. Kepler 2 tells us that 
the planet sweeps out equal areas in equal times. 
Over a full orbit (in time P) the planet sweeps out the full area of the ellipse, so the rate at 
which area is swept out is: 

 
 

Orbital angular momentum: 

The planet’s transverse velocity component is:   . 
 
The angular momentum per unit mass is given by 
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We can subsstute for P using Kepler 3: 

 
 
To get the angular momentum of the orbit: 

 
Where                               is the semi-latus rectum of the orbit. 
 
 
Orbital Energy: 
The orbital energy per unit mass is 

 
At periastron: 

 

 
 
The total energy (here calculated at periastron) is: 

 
 
Q2: show that you get the same answer at apastron where r = Q = a(1+e). 
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Section 3: Hunting exoplanets – The Transit Method 

The simplest method to find planets is to look for the drop in stellar flux due to a planet 
transiting across the stellar disc. 
 
We can observe planets within our Solar System 
transiting the Sun in the same manor – Venus is 
shown in the photo to the right. We don’t observe 
these transits every time the planet passes between 
the Sun and Earth though. The reason for this is that 
Venus and Earth’s orbits are slightly inclined 
compared to each other. We need the geometry to 
work out for Venus to transit the Sun from our 
perspective. 
 
Transits only occur if the orbit is almost edge-on. We might want to know what the 
probability of observing a transit might be. 
 
We can classify transits into two groups (i) full transits and (ii) grazing transits: 
 
 
 
 
 
 
 
 
Full transits occur when the whole planet crosses the stellar disc, whilst grazing transits 
occur when only a part of the planet crosses the stellar disc. 
 
As the planet orbits the star it creates a region 
of space that is within the planet’s shadow. 
We can then draw a ‘shadow band’ in a 
sphere of the parts of the sky that the planet 
can be in and cause a transit. 
 
Mathematically we can describe grazing 
transits by: 

 
And full transits by: 

 
These occur when the whole planet (Rp) fits 
within the stellar disc (R*). 
 
We might then ask, “in what kinds of system are you most likely to see a transit?” 
 

acosi ≤ R* + Rp

acosi ≤ R* − Rp



You are more likely to see a transit from: 
- a planet close to its host star (small a), 
- inclinations (i) that mean you look into the plane of the planetary orbit, 
- planets with large Rp/R*. 

 
 
Transit probabilities: 
Transits occur only in nearly edge-on 
orbits:  

 
 
 
 
 
 
The transit probability is given by: 

  
where we have assumed that the radius of the planet is much smaller than the radius of the 
star. 
 
Q0: What does this expression tell us about the kinds of planets that we can find by the 
transit method? 
 
 
 
Transit probabilities within our own Solar 
System: 
 
We can scale the probability of a transit 
expression to our own solar system to get: 

 
Q1: Can you get this expression for the scaling 
relation? 
 
 
 
 
 
We can see that hot planets are more likely to 
be detected than cold ones. This expression 
tells us that the probability at 1AU is 0.5% i.e. 
the probability of seeing Earth transit the Sun. 
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Meanwhile, the probability at 5AU (Jupiter’s orbit) is: 
𝑃𝑟𝑜𝑏 = 0.005 X ?∗

?@A"
Y X7BC

&
Y = 0.005 × 1 × 7

D
= 0.1%  

 
For hot jupiters – 0.05AU: 
𝑃𝑟𝑜𝑏 = 0.005 X ?∗

?@A"
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&
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E.ED
= 10%  

 
So, thousands of stars must be monitored to discover planets by spotting their transits.  
 

Q3: If we move a planet further away 
from the star, what happens to the 
transit depth? 
 
 
 
The transit depth is dependent on the 
fraction of the star’s disc that the 
planet covers up: 
 

 
 
The observed depth tells us about the planet to star area ratio and we can find the stellar 
radius from its spectral type. 
 
Q4. What fraction of a host star would the following planets cover: Venus at 0.72AU and 
Pluto at 39.5AU? 
 
 
 
 
 
 
 
 
 
Q5: If we move a planet further away from the star, what happens to the transit duration? 
 
 
 
Transit duration gives the stellar density: 
Let’s look at the simplest case of a circular orbit and i = 90 degrees – 
i.e. the observer looks directly into the plane of the transit. 
 
Now imagine looking down on the system.  
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The planet traces out a circle with circumference = 
2𝜋𝑎 
The transit occurs over the distance (approx.) 2𝑅∗ 
 
So  

 
And using Kepler’s third law: 

  

And using  gives:  

  
But what if our orbit isn’t edge on to the observer? 
Real orbits have non-zero inclinations and so we define the impact parameter b. This 
parameter is the projected distance of the planet from the centre of the star at mid-transit 
and is measured in units of stellar radius. 
So, 0 < b < 1+Rp/R* for a transit. 
 

 
 
So, what happens to the transit duration if the transit is not edge on? 

• Higher b means smaller T/P. 
• Transit duration decreases – makes sense, planet doesn’t have to cross as much of 

the disc so it shouldn’t take as long! 
 
Planetary surface gravity: 
We can calculate the surface gravity of a planet from the observations! 
Imagine now that we also go out and find the planet via radial velocity: 
We still are considering our simple case with a circular orbit, and edge-on view ( i = 90o ). 
The stellar reflex velocity is given, in this case, by 

 
 
This gives the star’s radial velocity curve, and we can find the slope of this using: 
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The planet provides the gravitational pull on the star and causes the wobble therefore this 
/1G
H

 has to equal I<6
&"

 i.e. the star’s orbital acceleration = slope of RV curve at t = T0: 
 
 
 
 
 
 
 
 
 
 
With this equation we can calculate the surface gravity of our observed exoplanets! From 
this, we can then get the planetary density: 
 

  and   
Insert the planet surface gravity: 

 
To get the density: 

 
We have Rp / R* from the transit depth, so, to find the density, we need to measure R* so 
that we can get Rp from Rp / R* . One can do some clever stuff, if so inclined, using new data 
in the Gaia catalogue involving the angular radius of the star and the parallax to get the 
stellar radius and in turn get an expression for the planetary radius: 

 
 
Putting it all together, the planet’s bulk density is found purely from observable quantities 
as 
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(Clearly this is not an expression to memorise! But it shows you how all the observed 
quantities can be combined and used to calculate the planetary density). From this we find 
that there is a lot of diversity in the structure of exoplanets and this can be shown pictorially 
in the plot below: 

 
We can also make a similar plot showing contours of constant composition: 

 
 
We see lots of lower mass 
planets seem to have 
compositions similar to Earth, 
but for larger planets there’s a 
big jump up to less dense 
composition. 
 
 
 
 
 
 
 
 

Answers: 
Q0: Transit surveys find planets in small orbits around large parent stars. 
Q1: 𝑃𝑟𝑜𝑏 = ?∗
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Q3: the transit depth will decrease. 
Q4. Venus: 7.5x10-5, Pluto: 2.9x10-6 

Q5: It should increase – it will take longer for the planet to track across the stellar disc. 
 
 
 
 
 
 



Section 4: Hunting exoplanets – Microlensing 
Gravitational microlensing is the hardest way 
to find exoplanets, we can think of it a bit like 
“looking for (and finding) invisible planets 
around invisible stars”. 
But this technique is particularly useful 
because it isn’t biased to very close-in planets 
like for transits or radial-velocity! Therefore, it 
is effective for finding cool planets.  
 
The sweet spot for finding exoplanets by this method is a few AU from the host star. And 
generally seen around a low mass star (Mdwarf) just because there are very many more of 
them in the Universe! So, an example of a “good” system for microlensing would be: 

 
 
Gravitational microlensing was predicted by Einstein’s general relativity – although Einstein 
himself thought we would never see it! There are two aspects of general relativity that that 
are useful to our understanding of the phenomenon of microlensing: 

• particles (and light) follow shortest available paths (aka “geodesics”) through 
spacetime, 

• and mass (and energy) causes spacetime to warp. 
We can draw light moving around a massive object as: 

 
(noting that light travels in a straight line through curved space, but that is a bit tricky to 
draw!) 
Einstein calculated this 𝜃 or “bend angle” using general relativity and found: 

. 
 
We can use some Newtonian physics to estimate this bend angle. 

 
Start by writing the vertical acceleration as 𝑔J . Then notice that the fraction, 𝑔J/𝑔 must 
equal 𝑅/𝑟. This then gives us an expression for 𝑔J which is essentially an acceleration. Since 
this is an acceleration, we can obtain an expression for the vertical velocity. 
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Noticing that the x-component of the velocity is c, we can obtain an expression for the bend 
angle with a little algebra. Remarkably, this expression is very similar to the true expression 
for the bend angle – what is a factor of 2 between friends?!  
 
If we now consider not just one light beam passing this lens star but mulsple, we see that 
the black dot (our lens star) truly does act like a lens (diagram below!). Knowing the bend 
angle, we can obtain an expression for the focal length of this space-lens. 

 
But hold up! This focal length depends on R. What does this tell us? 
Light from different distances around the object focuses differently! 
 

 
The image above on the left shows a lens that we are used to. Light comes into the lens and 
gets focussed to some point a focal length away from the lens. The image on the right 
shows the kind of lensing that occurs with microlensing. 
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Lensing by a point mass: 
Light from a background source deflected by lens mass (e.g. star) 

 
And two distorted/magnified images of the background source are created: 

 
 
If viewed head-on (2), an Einstein ring is seen, but in most cases, we observe two spots 
above and below the lens object. We can calculate the radius of the Einstein ring by using 
the lens makers equation and a bit of optics… 
 
 

 
 
 
 

 
 
Lensing can happen by galaxies and galaxy clusters, but we care about lensing of stars by 
stars, and especially in the microlensing caused by any associated exoplanets. 

Geometric optics :
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With a point mass lens, 2 images are seen on 
opposite sides of lens. There is one major image 
outside the ring (1 in the image) and a minor 
image inside ring (2 in the image). The 
magnification, which we denote as A(t), is the 
sum of the areas of the two images and changes 
with time. This magnification varies with time, 
getting brighter as the source object reaches 
the centre of the Einstein ring, before 
decreasing again. 
 
The magnification, A, depends on the impact 
parameter, u = R / RE. For a small impact 
parameter (e.g. red in the cartoon below), there 
is a large magnification and source stars with a 
larger impact parameter (blue) would have a 
lower magnification. 

 
 
 

Microlensing is an achromatic phenomenon, i.e. all wavelengths are affected equally, and 
the chances of microlensing are ~ 1 in a million for the lensing of Milky-Way stars at DS ~ 8 
kpc (i.e. not very high!). For any given star, it will be lensed only once. 
 
Finding planets using microlensing: 
When the lens star has an orbiting planet, the lens system is a binary lens with an extremely 
small mass ratio mp / M*. Most binary lens events are binary stars, and not a star-planet 
system. Binary lens light curves are complicated, with multiple peaks and sharp jumps when 
new image pairs emerge or disappear. With good monitoring, the parameters of the binary 
can be recovered, and we can determine the star and planet mass, the orbit size and the 
distance.  
 
To discover exoplanets by this method, observers use the following strategy: 

• Monitor many (~109) stars to discover microlensing events (finding ~2000 stellar 
events/yr). 

• Monitor the most promising events with dense, high precision photometry from 
several sites. 

• Look for deviations from single-star light curve due to planets. 
This requires lots of time on small telescopes around the world. 



The timescales for the planetary blips seen 
are ~ few days for Jupiters, ~ few hours for 
Earths and the method is most sensitive to 
planets with a ~ RE , near Einstein ring radius 
(~ 3-5 AU for typical parameters). 
 
Microlensing planet light curves: 
The planets act as a smaller-mass lens and 
within the light curve there is a large (but 
brief) signal from small planets. The duration 
of the whole event signal scales as Einstein 
Ring radius: 

 
Which scales as the mass of the star. The 
duration of the planetary spike compared to 
the main event depends on the mass ratio, mp 
/ M*. 
 
Summarising microlensing: 

• 278 planets have been found so far by microlensing*, in 256 systems and 
including 10 multi-planet systems. Earth-mass planets can be detected – the 
smallest three are 1.4, 1.7, and 2.3 Earth masses. 

•  Typical lens stars are ~0.3 Msun ( 0.1 - 2 Msun) 
•  It is sensitive to “cool” planets at ~ 3-5 AU - outside the “Snow Line”. 
•  Planet detections are sometimes ambiguous - one light curve can have several 

possible solutions for the properties of the source.  
•  There are no repeat observations – it is a one-time event.   

 
 
Some potentially useful resources:  

• https://www.youtube.com/watch?v=_aZZt8dM-_0 
• https://www.youtube.com/watch?v=k7U_RGDWP94 
• (*) https://exoplanet.eu/catalog/  

Some visualisations: 
• https://science.nasa.gov/mission/roman-space-telescope/microlensing/  
• https://www.youtube.com/watch?v=Wkf3AkVvPAM  
• https://www.youtube.com/watch?v=d2XZYFWPWiE  
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Section 5: So, you want to build a planet? 
 
We know that planets form within 
protoplanetary discs, but how? 
 
Protoplanetary discs are 99% gas by mass 
(specifically, about 75% H, 24% He, <1% 
others). These discs are 1% dust grains by 
mass i.e. solids (graphite, silicates) and ices 
(H2O, CO, CO2,…). 
They have a typical size of: 10s-100s AU 
 
 
It would be easy to make planets if you had 
infinite time… but within our discs, most of 
the gas has dissipated by 10Myrs (see plot to 
the left). This means that we must form 
planets faster than this, or else there won’t be 
anything left to make them from! 
 
 
Imagine that we ground up all the planets in 
the solar system and then distributed the 
mass smoothly with radius. Then we add back 
enough gas (H, He) to restore the solar 
composition. This way, we have made a disc 
that should be the same as the one that the 
Sun had in its youth. 
We could calculate a thing for our disc called “a surface density profile”. This tells us about 
how the mass is spread out over the area of the disc, and we could calculate it with the 
following expression: 

 
Our disc would have a total mass of 
~0.01 MSun out to ~30 AU. 
 
With this information about the surface 
density, we could combine information 
about the heating and cooling of the 
disc by friction and stellar irradiation, 
and this would enable us to compute: 

• The temperature structure T (R ) 
of the disc, 

• And therefore the “snow Lines”. 
These are the distances outside of which different minerals and ices “freeze out” and 
become solids. 
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The key stages in planet formation:

 
 
The image about shows different steps in the planet making process. The four main stages 
of planet formation are given in the table below, alongside the role of the protoplanetary 
disc gas and the timescale over which the stage happens. 

Stage Role of gas Time scale 

1. Settling and growth of dust grains Dust well-coupled to gas Probably rapid. 

2. Pebbles and boulders to km-sized 
planetesimals 

Hydrodynamic drag  
-> inward motion of the 
solids 

Must be rapid. 

3. Planetesimals to planet-sized 
bodies/giant-planet cores 

Independent of gas. Slow. 

4. Gas accretion on to giant-planet 
cores 

Orbital migration due to 
gravitational torques. 

Slow. 

 
Let’s talk a bit about disc structure and then each of these stages of planet formation. 
 
Disc structure: 
If we want to know about the structure within the disc, it would be sensible to start by 
considering how its density varies with height above the midplane. To do this, we need to 



consider the forces acting on the gas. The three forces are the centrifugal force, the 
gravitational force and the gas pressure. 
 
Gravitational force from the centrifugal force: 
We can calculate the gravitational acceleration with height above the midplane of the disc: 
 
Lucy Hadfield’s voice is ringing out in your head “first you draw your picture, and then you 
draw your coordinate system”. 
 
The z component of the gravitational acceleration can be written down using 
some trig. 
 
𝑔K
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𝑧
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𝑔K = 𝑔
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√𝑟/ + 𝑧/
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𝐺𝑀∗

𝑟/ + 𝑧/
𝑧

√𝑟/ + 𝑧/
 

 
And then we note that we have a thin disc (so z << r) and that it is Keplerian (so 𝐹( = 𝐹3$"# 
so we can write 𝑔 ≈ Ω/𝑟). With this information, we can write down the following: 
 
Keplerian:	

𝑔 =
𝐺𝑀∗

𝑟/ + 𝑧/ ≈ Ω/𝑟 

 
Thin: 

𝑧
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And combining: 

𝑔K =
𝐺𝑀∗

𝑟/ + 𝑧/
𝑧

√𝑟/ + 𝑧/
≈ Ω/𝑟

𝑧
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This has given us an expression for how the vertical component of the acceleration varies 
with height (z). 
 
Gas pressure from the gravitational force: 
Hydrostatic equilibrium tells us that the pressure and gravitational forces in our disc are 
balanced. Mathematically we would write this as: 

𝛁𝑃 = 𝜌𝒈 
This must be truly vertically, in other words, the force from the gas pressure pushing up is 
balanced by the gravitational force pulling down. 

𝑑𝑃
𝑑𝑧 = −𝜌(𝑔K 

Where 𝜌( is the gas density within the disc and P is the gas pressure. 
But we can’t integrate this as it is to get an expression for the gas density. Pressure and 
density are related to each other (remember 𝑃𝑉 = 𝑛𝑅𝑇 from high school?). The pressure 
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term P depends on the density, so in order to integrate this we need to write the pressure in 
terms of density explicitly. 
 
We can do this by using the sound speed in the gas, which can be written using: 
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We can then eliminate pressure from the hydrostatic equilibrium expression: 
𝑑𝑃
𝑑𝑧 = −𝜌(𝑔K 
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(because the speed of sound is constant with z, so we can pull it out of the differential) and 
using the expression we got for the vertical component of gravity: 
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We can then integrate this to solve for the density as a function of height: 
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Our integral limits are easy for the right-hand side, from 0 (the midplane) up to some 
arbitrary height Z (Note: you could of course keep this labelled as z, but it is bad practice to 
use the same label for a limit as for your variable (dz)!) For the left-hand side, the density 
varies from the density in the midplane 𝜌(0), that we chose to call 𝜌0, to the density at the 
height Z, 𝜌(𝑍). 
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At this point we define H, the midplane density half-thickness or scale height. 𝐻 ≡ 3%

S
 and 

relabel Z and z for ease. 
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This expression tells us how the gas density within the disc varies with height above the 
midplane. 
If we integrate this expression, we get an expression that relates the midplane density half-
thickness H, to the surface density Σ that we met at the beginning of this section: 



 
This quantity can help us to understand the mass distribution within the disc, since it will 
vary with radius (r) from the star. It is useful because this is an observationally resolved 
value! 

 
Stage 1: Dust settling and coagulation: 
We want to know how quickly dust can settle down to the midplane of the disc. To do this, 
we need to consider the forces that are acting on the dust. The two important forces are the 
drag force on the dust and the gravitational force on the dust. 
 
Let’s start with micron-sized particles. The gas exerts a drag force (which opposes velocity) 
on the dust grains (Stokes drag) and this causes the dust to drift relative to the gas. 
Mathematically we write this drag force as: 

 

 
Let’s consider the meaning behind this equation: 

• How does dust size influence the drag force? Larger dust grains (big 𝑎,) experience a 
larger drag force than smaller ones, so they’ll slow down faster. 

• Dense gas discs will result in larger drag forces. There’s more gas to slow down the 
dust. 

• Hotter discs have a higher sound speed. This means that hotter discs have higher 
drag forces than cooler discs. The gas in a hot disc will have more kinetic energy than 
in a cooler disc, so this provides more opportunity to exert a drag force on the dust 
than if the gas was cold. 

 
Q0: Can you do a units check on this equation? Does it make sense? 

 
We can then estimate the acceleration (a) of the dust particles and the timescale of this 
drift (𝜏2): 
Acceleration is a force per unit mass:  𝑎 = T

5
 

And we also know that it is a velocity per unit time: 𝑎 = )
#
 

So, the acceleration of the dust grains must be: 

𝑎 =
𝐹
𝑚,

= −
𝑣,
𝜏2

 

(force on the dust divided by its mass, or the dust drift velocity divided by the drift 
timescale) 
The mass of the dust grain could be estimated from its volume (V ∝ 𝑎,>) and density (𝜌,): 

𝑚, ≈ 𝑎,>𝜌,  
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 So, we can all this use this to estimate the drift timescale (𝜏2):	
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We can assume that the dust settles vertically into the midplane, and then calculate the 
timescale for this by assuming our disc is in hydrostatic equilibrium (force balance) and that 
there is no unpleasant turbulence to make our lives harder! 
 
We balance the gravitational and drag forces: 

−
𝑣K
𝜏2
= 𝑔K 

And then replace the timescale 𝜏2 with the expression we found above: 

−;
𝑐@𝜌(
𝑎,𝜌,

= 𝑣K = 𝑔K 

We also have an expression for 𝑔K, remember 𝑔K ≈ Ω/𝑧, and we can rearrange this 
equation to get the vertical velocity of the dust (𝑣K). 
 

𝑣K = −Ω/𝑧
𝑎,𝜌,
𝑐@𝜌(

 

 
We can use this velocity to get the settling timescale, the time for the dust to travel the 
distance z at this velocity. 

𝑡@$##'$ =
𝑧
|𝑣K|
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This tells us that big grains settle faster than smaller ones, and that the timescale for settling 
is smaller for colder discs (𝑡@$##'$ ∝ 𝑐@ ∝ 𝑇E.D). 
 
Q1: Try calculating the settling timescale for a 1mm dust grain at 1 AU, a disc temperature 
of T = 600 K, a gas density of 𝜌( = 10-6 kg m-3 and a dust density of 𝜌( = 100 kg m-3. You may 
assume the star is a solar mass star, and that the mean molecular weight is 𝜇 = 0.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



We get a settling time of ~106 yr for 1 mm grains, but it turns out this is too slow! L In order 
to reduce this settling timescale to ~104 yr, we would need to add more physics into our 
model. More complete models include: 

• Accounting for the fact that grains will collide as they fall and settle. This 
collisional growth during the settling process makes particles bigger, so they 
settle faster. 

• There will be a spread of velocities of the dust grains, and this means more 
collisions, so again causes faster settling. 

• The grains don’t have a perfect spherical shape, they’re all nobly. More 
scientifically, the fractal grain structure increases the drag force and the 
chance of collisions, decreasing the settling time. 

 
 
The gas and dust within the disc orbit the star differently. 
The orbital acceleration that the gas feels can be described by the following force balance: 

 
Centrifugal force = gravitational force + gradients in the gas pressure 

 
But the solid dust particles follow Keplerian orbits: 

 
 
The gas is slightly pressure supported compared to the dust, so the gas orbits more slowly 
than the solids/planets. The solid particles “feel” a headwind – this causes orbit decay 
(remember the stages of planet formation in the table above?).  
 
Stage 2: Boulders to planetesimals 
Getting from dust to clumps can be explained with our current scientific understanding, but 
growing these clumps to larger boulders is more of a puzzle. Currently, there’s a missing 
piece of the puzzle, some missing physics that we need to recognise in order to explain the 
growth of metre-sized bodies to km-sized bodies very quickly. There are two possible 
mechanisms that could be the missing puzzle piece: 

1. Gravitational instability – if some bit of the disc gets dense and cool enough to 
collapse then it could form a planet. 

2. Fast Collisional growth – lots of collisions of these bodies leading to them becoming 
larger bodies. Turbulence might be important here. Turbulence results in instabilities 
in the disc and therefore denser pockets of dust and gas. This can then lead to 
growth of this objects. So, turbulence may cause fast collisional growth from pebble 
sized objects to 100-1000 km-sized objects. 

We might not understand how this stage happens, but we know that it must because we 
know that planets exist! 
 
The next growth stage involves gravitational dynamics. The central star provides the 
dominant force and the evolution at this stage is driven by gravitational scattering and 
collisions. 
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The Hill Sphere is the region around a planet where its gravity is more important that the 
star’s gravity. Specifically, the growing planet’s gravity is more important than the tidal force 
due to the central star.  
The expression for the hill radius is: 

. 
This is radius is important for determining the planet’s “feeding zone”, the area around the 
embryo that can supply more material to the growing embryo. The to-be-planet can only 
grow from the region where its own gravity dominates, so the dominant embryo planet 
grows by accreting all the planetesimals within the “feeding zone”. 
 
We can estimate the mass of the embryo using the following expression: 

 
 
 
 
 
      
This tells us about the mass within the feeding zone. 
 
The half-width Δ𝑎 of annulus is given by feeding-zone radius: 
 
 
(This value for b comes from numerical simulations.) We 
might think of this feeding-zone radius as the Hill radius, 
but in reality, the planet embryo is usually not in a 
perfect spherical orbit and this means it can feed from a 
volume that’s slightly larger than the Hill sphere itself. 
 
The mass of planetesimals in the feeding zone grows 
more slowly than the embryo mass, so eventually the 
growing embryo will be starved as no more mass is 
being supplied to it. The maximum embryo mass is 
called the isolation mass and we can calculate it using: 

 
 
The image here shows you what the feeding zones might look like. These gaps could be 
where planets are forming, even though the planet itself can’t be seen. 
 
The isolation mass could also be written as:  
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The runaway growth of a rocky core stops when the embryo reaches the isolation mass. This 
is the end of the core-accretion (CA) stage. At this point, further growth can happen by 
collisional mergers of fewer large bodies (which we call “oligarchs”). An example of this is 
the Earth and the Moon. 
 
Some estimated formation times are shown below: 

• Core of Jupiter: 1-10 Myr – this is good, because remember the gas in the disc is 
dispersed by 10Myr? 

• Terrestrial planets: 100 Myr 
 
These seem reasonable but there are problems with this CA theory e.g. within models we 
find the Neptune takes too long to form at its current radius. However, all is not lost for CA, 
there is evidence from orbits of Kuiper-belt objects that Neptune might have migrated 
outward at some point. So maybe it’s ok after all! 
 
At this point, giant planets need to accrete their envelope. The kinetic energy of gas in the 
outer disc is low (because the gas is cool). 
 
If we start with a core mass < 10 Earth masses then: 

• |Egrav | isn’t huge. 
• The planetesimal accretion supplies the internal energy (i.e. heats the gas). 
• The gas gets heated, so it is only just gravitationally bound. Mathematically 

this means that the envelope’s total energy:   Egrav + Ekin ~ 0. 
• Our static envelope fills the Hill sphere and so there is no room for more gas 

to come in and fill it up, and there can be no more accretion! 
 
However, if we start with a core mass > 10 Earth masses then: 

• There is a deeper gravitational well than before. 
• Accretion doesn’t supply enough internal energy to heat the gaseous 

envelope as much i.e. mathematically now: Egrav + Ekin < 0. 
• The envelope contracts within the Hill sphere and allows accretion of more 

gas, so the core can grow further. 
 
We need several Myr to accrete the mass of Jupiter 
(i.e. about 300 Earth masses). But we know that the 
gas disc disperses after about 10 Myr. This explains 
the low gas fraction in Uranus and Neptune. They’re 
further out, there’s less gas out there so it’s harder 
for them to accrete. 
 
The standard model for Jupiter formation was 
published by Pollack in 1996. 

• Stage 1: Core grows by planetesimal 
accretion. This happens pretty quickly. 

• Stage 2: Isolation mass reached, slow gas 
accretion begins. 



• Stage 3: Rapid gas accretion, stops when a gap clears in the gas disc (see the next 
section!). 

 
 
Answers: 
Q0: [N] = [m2] [kg/m3] [m/s] [m/s] = [kg m /s2] = [N] 
 
Q1: first we can calculate the orbital angular velocity at this distance from the star: 

 Ω = yI<∗
%&

= yU.UV∗7E'((∗7.:W:∗7E&)

(7∗7..:∗7E(()&
= 2.002 ∗ 109V 

Then, calculate the sound speed in the gas cX = yG*Y
Z5+

= y7.>W∗7E'"&∗	UEE
E.D∗7.UV∗7E'",

= 3149	m/s  
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2.002 ∗ 109V
3149 ∗ 109U

1 ∗ 109> ∗ 10E = 7.85 × 107>𝑠 = 2.49𝑀𝑦𝑟𝑠 

 
 
Useful resources: 

• http://www.khadley.com/courses/Astronomy/ph_205/topics/SolarSystemFormation
/index.html#:~:text=In%20the%20core%20accretion%20scenario,the%20disk%20to
%20form%20protoplanets   

• https://www.youtube.com/watch?v=cnzktuvxAQc  
 
 

Section 6: Exoplanet migration 
 
Just because a planet forms somewhere, that doesn’t mean it will stay there. It was 
established that Jupiter-like planets form by core accretion outside the snow line, but then 
came the observations of hot jupiters, including the discovery of 51 Peg b, a Jupiter like 
planet with an orbital period of 4 days! Immediately the exoplanet community were asking 
how this could be, and the answer was that it didn’t form there but moved there. 
 
Previously in the course we have discussed disc formation, and planet formation (the first 
two points in the diagram below). This part of the course considers the third step – inward 
migration of giant planets. 
 

 
Image credit: Winter+ 2022 
 



First, we must form our planet inside the gas disc. In doing so, the planet interacts with the 
gas disc and exerts a torque on gas as it flows by.  
There is a region around the planet within which the planet and gas can interact, i.e. a 
region of interaction, and this is approximately the Hill radius. (Remember that the Hill 
radius is the radius around the planet where the planet’s gravity is dominating over the 
star’s). 

 
The torque applied to the gas by the planet induces the transport of angular momentum. 
Remember that a torque is a rate of change of angular momentum?  

𝜏 =
𝑑𝐿
𝑑𝑡  

Therefore, if there is a torque then there must be a change in angular momentum. As we 
will see, the planet loses angular momentum to the gas outside of its orbit. This causes 
inward planet migration. Planets can cause gaps to open within the disc. This happens if 
their Hill radius is bigger than the disc scale height. 

 
(no gap)       (gap) 
 
 
Planet disc interactions: 
 
Let’s start with the image on the right and 
imagine what happens to the gas (black arrows) 
as the planet and gas orbit the star. 
 
The gas inside the orbit of the planet orbits 
faster than the planet. Therefore, it loses 
angular momentum to the planet. This causes 
the gas to fall inward and orbit faster (image 
2). 
 
Meanwhile, the gas outside the orbit of the 
planet orbits slower than the planet. The 
planet loses angular momentum to the gas, 
and so the gas moves outward and orbits more 
slowly (image 2). 
 
But what about the gas very close to the 
planet? These arrows which represent the net velocity of the flow (or you could think of it as 
what the planet would see if it was stationary, and the gas whooshed by) should match up. 
So, we can draw image 3. The gas forms spiral arms that transfer angular momentum from 
inner disc to outer disc 
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What does all of this then mean for the planetary orbit? Let’s first consider low-mass 
planets… 
 
Disc Migration: 
 
Low-mass planets (Type 1 migration): 
In the case of a low-mass planet, disc material extends right up to the 
planet and there is no gap. The planet excites spiral arms, which leads to 
the inside leading arm and outside trailing arm. Angular momentum is 
transported throughout the system outwards through the planet. 
 
The planet loses angular momentum, and this causes the planet to 
migrate inwards (usually very rapidly). No gap opens, and this is called 
Type 1 migration. 
 
It seems intuitive that the migration rate is proportional to the amount of material that 
“feels” the presence of the planet. More scientifically, this rate depends on the amount of 
gas inside the Hill sphere. 
 
The larger the planet, the faster the migration timescale. 

 
 
 
But more massive cores can open a gap in the 
disc, an example from (R Nelson, QMUL) is shown 
in the simulations to the right for a 1 Jupiter-mass 
planet. 
 
 
 
 
 
 
 
 
 

Less massive planets don’t clear gap in disc. 
• Low-mass planets 
• Hill radius < H of disc 
• Gas flows around Hill radius 
• Leads to “Type I” migration 

More massive planets clear gap in disc 
• High-mass planets 
• Hill radius > H of disc 
• Disc truncated at Hill radius from 

planet 
• Leads to “Type II” migration 

 
 

tmigrate ⇡ 105 0.1MJup

Mplanet
years

 Image credit: Frédéric Masse. 



 
 
Gap width is set by balancing gravity against 
“viscosity”. 

• Gravity causes gap to open 
through the torques 
generated. 

• But bits of material in the disc 
is collide with each other. 

• They transfer angular 
momentum so they can move 
to higher orbits back inside 
the gap. 

• Eventually gravity and viscosity balance and the gap width is set. 
 
Massive planets (type II migration): 
This applies to planets more massive than about 0.1 MJupiter but it does depend on the ratio 
H/RH. The gap forms and clears material from near the Hill radius. Viscous disc evolution 
drives the planet migration and viscosity replenishes gas. The viscous replenishing is the 
slowest process and therefore, the planet migrates on this viscous timescale: 

 
This is about 0.5Myr i.e. < 1Myr. Type II 
migration can bring Jupiters in from 5 AU in < 1 
Myr. This forms hot Jupiters (<1Myrs) while the 
gas disc is still present (until 10Myrs). But then 
the obvious question is what stops them? Why 
don’t they migrate inwards until they are 
swallowed by the star? Why is Jupiter still 
where it is?  
 
Stalling migration: 
Planets form near 5 AU and then migrate 
inward in a 0.5 Myr timescale. The planet stalls 
when the disc dissipates, as there is nothing left 
to allow for angular momentum transport. The 
probability of finding a planet near the semi-
major axis a is: 
 

 
 
We can plot a distribution of the exoplanet 
periods and we see a peak around 1000 days. 
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This makes sense because the planet spends more time at large distances from the star, so 
it is more likely to end up there. 
 
 
Implications of migration: 
We know that migration can form hot Jupiters, they form outside snow-line ( a  > 4 AU ) but 
then migrate inward to their present location. 
 
However, hot Jupiter migration is 
inefficient. Many planets merge with the 
star. Migration will clear planetesimals out 
of the inner region of the system, leaving no 
material for terrestrial planet formation… in 
other words, if Jupiter had migrated in, 
Earth probably wouldn’t be here. 
 
It is logical that migration would affect the 
planetary orbits. Migration within a disc 
involves a lot of viscous dissipation and this 
should lead to circular orbits (the lowest 
energy state).  
Instead, in the observations we can definitely 
see a population of planets in eccentric orbits.  
 
The scattering of orbits due to planet 
migration: 
If we start with a multiple gas-giant planetary 
system, which is more likely in metal-rich 
systems, the planets form relatively close 
together. The gas keeps the system stable and 
once the gas is removed, the planets can 
interact. The evolution of the system then 
results in chaotic orbits. Orbits can cross, there 
are close encounters and ejections, and the 
survivors are left with large eccentricities. The orbits can then recircularise via tidal heating. 
 
Eccentric migration fails if the planet goes inside the Roche limit during eccentric migration. 
In this case, the planet would be broken apart and fall into the star. Only planets with a(1-e) 
> aR (the Roche limit) survive. Tidal forces on the planet lead it to eventually returning to a 
circular orbit (circularisation) and this process roughly doubles the periastron distance. 
 
Remember this table? We’ve now covered stage 4: 

Stage Role of gas Time scale 

1. Settling and growth of dust grains Dust well-coupled to gas Probably rapid. 



2. Pebbles and boulders to km-sized 
planetesimals 

Hydrodynamic drag  
-> inward motion 

Must be rapid. 

3. Planetesimals to planet-sized 
bodies/giant-planet cores 

Independent of gas. Slow. 

4. Gas accretion on to giant-planet 
cores 

Orbital migration due to 
gravitational torques. 

Slow. 

 
Summary of the migration types we have met: 
Type I: disc migration, happens for low mass planets, no disc gap. 
Type II: disc migration, happens for high mass planets, disc gap present. 
Eccentric migration: caused by planet-planet interaction, eccentric orbit has to circularise 
(loses energy via tidal heating) and moves in, more likely in metal rich stars (because 
multiple giant planets). 
 
Useful resources: 

• https://www.youtube.com/watch?v=nwSNU3-m0ew  
• https://www.youtube.com/watch?v=ko52m9jJGTQ  

 
 

Section 7: The structure of exoplanets 
 
We know from earlier in the course that we can calculate the planetary bulk density from 
observational quantities such as the stellar orbital amplitude, the stellar parallax, transit 
depth and duration, the orbital 
period and stellar angular diameter.  
 
Remember this? 
 

Q0: can you remember what all the 
terms in this expression are? 
 
Ultimately, this expression comes 
from the following expression for 
the bulk density: 
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From the plot, we can see multiple branches for different types of planet. 
 
Solid planets: 
For solid planets, we use the following three expressions to model their interior. You will 
have met something very similar in the stellar part of the course, but there will have been 
an additional equation related to the stellar luminosity. For solid planets, the equations are: 
 
 
 

1. Hydrostatic equilibrium:  
 
Our planet is a constant size – it is in hydrostatic equilibrium. 
i.e. the gravitational force pulling in balances the gas pressure pushing out. 
 
 
 

2. Mass conservation: 
 
The mass of our planet is constant. The mass of a shell between r and r+dr depends on shell 
area and local density. 
 
 
 

3. An equation of state: 
 
We need to know how density depends on local pressure, and for this we need an equation 
of state. An equation of state (EOS) is a relationship between 𝜌 and 𝑝 (and 𝑇 for gases) and 
an example that you know well is the ideal gas law. This is the EOS that we use for stars, but 
for planets it’s not so simple. We need something that will work for the solids of our planet 
i.e. iron, silicates and ice. 
 
The density of iron, silicates and ice are determined by the Coulomb forces within them. 
Their density behaviours vary with pressure and pressure in the planet varies with depth. 
Variation in pressure covers orders of magnitude. We need an approximation that covers 
the full range of pressures, and it must work for all our substances - water, silicates and iron. 
 
Iron, silicates and ice are incompressible at low pressures (i.e. their densities don’t change). 
In this range, we can determine their behaviour from high-pressure lab experiments. At 
higher pressures, the chemical bonds break and the atoms are squeeze closer together. 
Electron degeneracy pressure becomes important – you will learn more about this in later 
years in quantum mechanics courses! 
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We can model the equation of state in different 
ways. In green is the lab experiments. Static 
compression experiments in the lab can reach 
2x1011 Pa and shock experiments can reach 1013 
Pa (but very high T). 
In red, the EOS from Thomas-Fermi-Dirac theory 
(this is OK at high pressure but not so good for 
low pressure.) This EOS balances Pauli pressure 
vs Coulomb forces but it doesn’t do chemical 
bonds (i.e. the lower pressure region). 
The black curve shows the modified polytropic 
EOS. This is just an equation that just happens to 
work well. 
 

 
 
We can then find the coefficients (c and n) for 
different substances and find that as a good approximation, density goes like the square 
root of pressure. 

 
This expression is only valid for pressures < 1016 Pa – but this pressure is about the pressure 
inside the core of the Sun, so this is ok for planets! 
 
Below are some models showing the bulk density of planets with planetary radius for a 
range of different planet masses (1, 5, 10 and 50 Earth masses). 
 

⇢(P ) = ⇢0 + cPn



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The ternary diagram (the Toblerone diagram): 
If we think about planets with 3 ingredients, as we have been doing, we can make a ternary 
diagram to describe and compare them. 
 
Ternary diagrams are lovely triangular shaped plots 
as shown on the right. 
 
Below is an example showing three planets (with 
cartoons of their structure). The fraction of each 
constituent is shown for planet B and the lines 
showing how to read the plot. Can you find the 
constituent parts for A and C? The answers are in 
the lecture slides. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Giant-planet models: 



Our modelling for solid planets does not apply to the gas giants. For them we will need an 
EOS appropriate for gases! In low-density regions, we can use our old friend the ideal gas 
law. 

 
But deep in the core, the electron wavefunctions may overlap (electron degeneracy again) 
so we need to adapt this equation. We need to include this electron degeneracy pressure. 

 
Here, ne is number of electrons per unit volume, and the gas is mainly fully-ionised H and 
He, so the constant KNR can be written as: 

(More on this in AS4012, 2 years from now! Don’t worry about this, but it is given here for 
completeness.) Notice that T is important in the ideal-gas law, but not in the degenerate 
law. 
 
We might want to know what the temperature within the gas giant is. For this, we need to 
consider that giant planets shrink as they radiate - Jupiter is still contracting and emits about 
65% more power in the IR than it receives from the Sun. 
 
Worked example: 
Use the Virial Theorem to find interior temperature: 

We can use this to make a rough estimate assuming the gas is fully ionised H (𝜇 = 0.5): 

 
This ignores the internal density structure but confirms that the gas is hot enough to be 
ionised so our original assumption was a good one. (But, this temperature is not hot enough 
for thermonuclear reactions – 1 million K – so we haven’t got a star!) 
 
So, the internal temperature is  
 
 
This is proportional to planet mass and inversely proportional to planet radius. 
 

• More massive planets with radii ~ 1 RJup have hotter interiors. 
• Inflated planets with masses ~ 1 MJup have cooler interiors. 
• Jupiter’s interior is getting hotter as it contracts. 
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Full models must include the transport equation to describe cooling – just like stars! 
Within the convective region: 

 
Within the radiative region: 

 
 
 
 

Section 8: Exoplanetary atmospheres 
We are lucky enough to live in a time where we can make observations as well as models of 
exoplanetary atmospheres! The first thing we might want to understand is what determines 
if a planet can retain an atmosphere – many exoplanets will start with one, but they might 
not keep a hold of it for various reasons, e.g. Mercury or Mars. 
 
Some things that determine if the planet could retain an atmosphere are listed below. 
Q0: can you think of any others? 
 

• The gravitational strength of the planet - i.e. mass/size will determine the 
gravitational pull on the atmospheric atoms/molecules. 

• The temperature of the atmosphere - e.g. how close the planet is to the star – will 
determine how much thermal energy the atmospheric particles have to escape the 
gravitational pull. 

• What the atmosphere is made of (e.g hydrogen is much lighter than nitrogen). 
 
 
Jeans escape as a method of predicting planetary atmosphere retention: 
The Jeans escape is calculated from the following method: 
Look at the top of the atmosphere and if the following two conditions are met then we say 
that the species (chemical) in the atmosphere will be lost/escape: 

1. if the mean free path of the species > the atmospheric scale height and 
2. if the particle velocity > the escape velocity 

 
What do these conditions mean? 

1. The distance the particle travels between collisions > distance between particles. 
This means our particle will keep going without collisions keeping it retained. 

2. The particle must be travelling fast enough to escape the planet’s gravity. Otherwise, 
if 1 is met but 2 isn’t, the particle will eventually be pulled back down. 

 
We can express this information mathematically, so that we will be able to quantify 
atmospheric retention: 
 
Calculate the escape velocity by setting the kinetic energy of the molecule equal to the 
gravitational energy. If these energies are equal, then the particle just has enough energy to 
escape:  
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We can calculate the mean kinetic energy of a molecule with mass m using an equation 
from thermal physics: 

 
This is the mean energy, and you could estimate the mean speed from this by rearranging 
the equation. To calculate the mean speed “properly” you can use: 
 
 
 
This latter expression comes from the peak of the Maxwell-Boltzmann distribution, and it is 
often called the root-mean-square velocity. Either of these expressions would be 
acceptable in an exam. 
 
The Jeans escape criterion is <v>  < vesc/6 to retain a given species (type) of molecule. 
 
Looking at at these expressions we can see that: 

• It is easier to retain heavier molecules e.g nitrogen rather than hydrogen, 
• It is easier for planets far out to retain their atmosphere because they have colder 

atmospheres, 
• Is it easier for planets with a larger gravitational acceleration to retain their 

atmosphere, 
 
Q1: You find an exoplanet with the same radius and temperature as Earth but 2 x the mass. 
How much easier is it for this planet to retain its atmosphere compared to earth? 
 
 
 
 
Worked example - Jeans escape of planetary atmospheres: 
You find an Earth-like exoplanet with radius 0.9 Earth radii, and an equilibrium temperature 
of 270K. Calculate the escape speed on this planet relative to Earth. 
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Calculate the “root mean square” velocity of oxygen on this planet given that it is 579m/s on 
Earth. Note that for Earth, Teq = 255K and Vrms = 579m/s. 
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𝑣%5@ = 1.03𝑣%5@	[&%#4 = 596m/s 

 
Since the escape speed on Earth is 11.2km/s, can this exoplanet retain oxygen? 

𝑣$@3 = 0.9 ∗ 11.2	𝑘𝑚/𝑠 = 10.08	𝑘𝑚/𝑠 = 10080𝑚/𝑠 
Need <v>  < vesc/6 to retain a given species (type) of molecule and 𝑣%5@ < 17𝑣$@3     

therefore, oxygen is retained. 
 
Worked example - Jeans escape of GJ1214b: 
Can GJ1214b retain hydrogen? It has an equilibrium temperature of 547K, mass of M = 
0.0197 MJup and planetary radius of R = 0.254 RJup. 
 
Use the Jeans escape criterion:  
molecules are retained if: 

 
 
i.e. 

 
 

Rearrange this to find the minimum mass that can be retained. 
 
 
 
 
 
 
 
 
 
Hence minimum molecular mass retained is 1.47 hydrogen atoms, i.e. molecular hydrogen is 
just retained. 
 
Q2: Jeans escape of planetary atmospheres: 
GJ 1132 b is a super Earth exoplanet orbiting an M dwarf. Its mass is 1.66 Earths and radius 
is 1.13 Earth radii. It has an equilibrium temperature of 529K with an Earth albedo and 409K 
for a Venus albedo. Calculate the escape velocity and the range of possible rms velocities for 
molecular hydrogen and determine if it could be retained or not. 
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Jeans escape is a useful but pretty rough approximation. There are ways of making heavier 
molecules escape, but you need to provide them with some extra energy in order to do so. 
Heavier atoms can escape if there are enough collisions with fast-moving, lighter atoms as 
this provides them with the extra energy needed. This requires a source of energy in the 
atmosphere and examples of this are planetesimal accretion in young planets or strong 
irradiation in low-mass hot Jupiters. 
 
An example of this is HD209458. Spectroscopy data shows a 4x deeper transit in the H 
Lyman-a line than at other wavelengths. This means that is has an extended atmosphere, in 
fact, it was found to be about the size of the planet’s Roche lobe. The atmosphere was being 
heated by irradiation from the star and the escaping gas (‘exosphere’) was filling the Roche 
lobe. This led to a new technique of measuring transits depths in different wavelengths. 
 
 
This was first tested on our own atmosphere during a lunar eclipse! During the lunar eclipse 
the Moon is in Earth’s shadow. Sunlight reaching the Moon has had to pass through Earth’s 
atmosphere. Looking at this reflected moonlight gives a spectrum of sunlight passing 
through Earth’s atmosphere and thus we can see the chemical signatures of the 
atmospheric gases that have absorbed the sunlight – e.g. water, methane. 
 

  
 
This can be applied to exoplanets where it is called “transmission spectroscopy”. First, 
observe a transit with a spectrograph and then measure the transit depth at every 
wavelength. We can calculate a spectrum ratio, the relative depth of the transit compared 
to the baseline flux, and we now know that this depends on wavelength: 



 
 
Both the planet and its atmosphere are causing the transit: 
The atmosphere has scale height: 

 
And the area of the planet silhouette responsible for the planetary 
transit is: 

 
But the area of the planet + atmosphere is responsible for the 
transit depth in other wavelengths: 

 
If the atmosphere is more transparent at some wavelengths than 
others, the transit depth will depend on wavelength. 
 
 
 
Transmission spectroscopy is done during a transit – when 
the planet is between you and the star. Here we are seeing 
the nightside of the planet. Another technique is 
“occultation spectroscopy” – when the planet is going 
behind the star i.e., we are seeing the spectrum of the 
dayside of the planet. We can’t see the planet as it is 
directly behind the star, but we can see it just before and 
just after (red arrows on the diagram). 

 
 

 
 
 
 

 
For this technique, we measure the occultation depth as 
a function of wavelength. During the eclipse we see the 
star only, but just out of the eclipse we see the 
spectrum from the star + planet dayside. Taking the 
spectrum when you couldn’t see planet and subtracting 
when you could, gives the dayside spectrum!  
 
 

 
 
Answers: 
Q0: if the planet has a magnetic field, what kind of star the planet orbits (e.g. how active it 
is) 
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Q1: v\X] = yX/I(/<-)
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Y = √2𝑣$@3[ 	 and need <v> < vesc/6 and <v> < √2𝑣$@3[/6 

=>  √2 times easier 
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Need <v>  < vesc/6 to retain  

With Earth’s albedo, 𝑣%5@ < 5.6	𝑣$@3   therefore, not retained. 
With Venus’s albedo, 𝑣%5@ < 6.4	𝑣$@3   therefore, retained. 

GJ1132b may retain molecular hydrogen. 
 
 

Section 9: Aliens? Exoplanet habitability 
 
The desire to find exoplanets is partly driven by our need to contextualise our own Solar 
System and Earth. We want to know how common a planet like our own is. It’s clearly 
special to us, but is it common? Specifically, is there any life out there? This drives the 
search for habitable exoplanets which is a growing area that is, unsurprisingly, very popular 
amongst the public and funding bodies! The search to find life within our own Solar System 
continues, but with growing numbers of exoplanets discovered every year, the hunt is now 
on around other stars too. A new age has begun with JWST, which is looking at atmospheres 
for hints of “building blocks of life”.  
 
Below is a famous system, Trappist-1. 

The star has a mass 8% that of the Sun and there 
are 7 planets in the system. 3 of the planets are 
Earth sized and the planetary equilibrium 
temperatures allow for liquid water on their 
surfaces! To the right you can see their transit 
curves! 



We might start by asking, what does a planet need to be habitable to us? This is clearly a 
complex question and there are many requirements, a few are listed below: 

• Liquid water, 
• A magnetic field - to protect the planet from cosmic rays, atmosphere retention, 

protect from stellar activity, 
• An oxygen rich atmosphere, 
• A star that isn’t too active, 
• The planet can’t have too large a gravitational pull (we’d get crushed), 
• A solid planet, 
• A stable ecosystem, 
• Maybe a large moon! Suggestions that our Moon could be very important RE season 

stability and tides. 
• … can you think of any others? 

 
The previous question (whilst clearly difficult to answer because of many interconnecting 
requirements) is it turns out, one of the easier questions to answer. What about when we 
hunt for exoplanets and ask if they could be habitable? 
The next question is “habitable to who?” We would be happy to find any life in the Universe 
(probably!) and we aren’t exclusively looking for life like us. So, in this sense we could mean 
any life (not necessarily complex). It then immediately follows to ask “should all life be like 
us?” The answer is probably no, but we only have one data point to work with – life on 
Earth… 
 
So, we can ask “what does a planet need to be habitable?” and the answers might go 
something like this: 

• Liquid water… maybe? It seems vital to life on Earth, but perhaps some other 
chemical could provide this role for life elsewhere. 

• A magnetic field to protect the planet from cosmic rays, atmosphere retention, 
protect from stellar activity. This one seems likely, retaining an atmosphere 
(whatever that may be) and protecting against X-rays and cosmic rays seems like it 
would be sensible regardless of the life. 

• An oxygen rich atmosphere… maybe? Again, perhaps another chemical could replace 
the role of oxygen on our planet. 

• A star that isn’t too active. This again seems sensible – CMEs are bad for all 
atmospheres and Xray flares will probably be bad for all life. 

• Planet can’t have too large a gravitational pull – if we want complex life, then 
presumably there will be some limit to the gravitational strength of the planet that 
would be sensible for the life to move around. This might not be the case for 
microbes though… 

• A solid planet…probably a gas giant is no good but again, who knows, maybe there is 
an exception for some microbes? 

• Star should live long enough for life to develop. Life will take time to develop (about 
4 billion years on Earth – fossil records go back to 3.7billion) so the star needs to live 
long enough for this to happen. 

 
Habitability indicators are properties of a system we could look at to determine if it might 
be habitable or not, examples are: 



• Orbital period of the planet, 
• Bulk composition of the planet, 
• Planetary atmosphere presence and composition, 
• The metallicity of the star – higher metallicity – longer period of habitability (Danchi 

and Lopez, APJ 769:27 (16pp), 2013, if you want to know more J) 
• The type of star – lifetime determines if life can develop, “Habitable Zone (HZ)”… 

 
When talking about the habitability of a planet/moon we soon hit upon a problem (as we 
have here): 
We aren’t asking a very well-defined question with “what makes a planet habitable?” this 
could mean a lot of things, habitable for what kind of life? And if not Earth-like life, then 
what? What would this look like, and therefore what environment would it need? And there 
is the additional problem - we don’t really know how to define it better, because we only 
know about the kind of life that exists on Earth. 
 
So, let’s assume we’re looking for life that is similar to Earth-life. This restricts our search, 
but at least we know what we’re looking for (kind of)… 
 
One definition of habitability: 
The obvious first question when looking for habitability for Earth-like life is: can the planet 
support liquid water? A more scientific way of asking this question is to ask “is the planetary 
equilibrium temperature consistent with the existence of liquid water?” 
 
The habitable zone (HZ) is the range of orbits that a planet could take around the host star 
and be able to support liquid water on the planetary surface. 
 
If a planet with Bond albedo A radiates as a blackbody of temperature TP, then:  

we can scale this to Earth and assume that our exo-Earths have the same greenhouse effect, 
therefore the same Bond Albedo (see later). 

 
Remember: 
The bond albedo tells us about the fraction of the power that gets reradiated into space. 1 = 
reflects everything back into space and 0 = reflects nothing. 
 
Keeping a comfortable distance: 
So, how close can we get to the star and be in the HZ/ support liquid water? Use the 
equation from above with the main-sequence mass-luminosity relation: 
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If we then fix the planetary temperature at Earth value, we can get a relation for the HZ with 
stellar mass: 

 
Once we have determined a as a function of stellar 
mass, we can plot it! 
 
 
 
 
 
 
 
 
 
Habitability requires more than this, but thinking about planets where liquid water can be 
supported on the surface is a good start. We can extend this idea of the habitability zone in 
various ways. A common HZ definition involves taking H2O and CO2 as the main greenhouse 
gases and involves the carbonate-silicate cycle. This cycle controls the CO2 levels over long 
timescales. 
 
 

è  CO2 from volcanos enters 
atmosphere  

è falls with rain 
è  weathers rocks 
è  transported to rivers and 

ocean  
è  deposited and buried  
è  back to volcanos. 

 
 
This cycle is important with respect 
to the “edges” of the habitable zone 
because the CO2 and H2O act as 
greenhouse gases to heat the planet. 
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In this definition of the habitability zone, the edges of the HZ get a bonus from the CO2 
greenhouse effects that help to keep the planet warm. 
 
Just within the outer edge of the HZ: 

• It is almost too cold for liquid water. 
• If the oceans freeze: 

• silicate weathering stops but 
• volcanism continues. 
• CO2 then builds up in atmosphere and 
• The planet warms. 

The planet thus manages to keep its liquid water. 
 
Just beyond the outer edge of the HZ: 

• The oceans freeze. 
• silicate weathering stops but 
• volcanism continues. 
• CO2 clouds form as before, but now the many clouds act against us. 
• Being covered in clouds leads to an increase in the bond albedo of the planet. 
• It reflects more light (and heat), 
• so the planet stays cold. 

 
 
The inner edge of the habitability zone: 
As we move closer to the star, the planetary temperature (TP) rises. Thus, more H2O 
evaporates. 
 
At solar flux f = 1.1 fhere,now the stratosphere becomes wet. 

• Water therefore diffuses into the upper atmosphere, 
• UV light dissociates the water molecules, 
• the water is lost to space (bad). 

 
At f = 1.4 fhere,now, the oceans evaporate entirely… 

• Runaway greenhouse (very very nasty… poor Venus.) 
 
Our current day Solar System: 
 
The present inner edge is 0.95 AU and beyond this, loss of 
water via photolysis, and hydrogen escape. 
The present outer edge is 1.37 AU and beyond this, the formation of CO2 clouds. 
 
This assumes a HZ with a carbonate-silicate thermostat, and 
requires: 

• Water 
• Subduction of oceanic crust 
• Volcanism 

 

4⇡R2
p�T 4

p =
L⇤

4⇡a2
⇡R2

p(1�A)

€ 

f inner =
fhere, now

0.952 = 1.1 fhere, now

€ 

fouter =
fhere, now

1.372 = 0.53 fhere, now



But stars are not constant throughout their life, their luminosity (amongst other things) will 
change and thus their HZ changes too. Really, we want somewhere that is continuously 
habitable, or else we are in trouble! 
 
Suppose we want the carbonate-silicate thermostat to operate continuously from ~700 Myr 
to 5 Gyr.  
Inner limit of HZ: 

• No loss of water before star is 5 Gyr old. 
Outer limit of HZ: 

• No CO2 clouds when star is only 700 Myr old. 
 
 
 
 
 
 
 
 
 
 
Stellar spectral type and the planetary albedo: 
The spectral type of a star determines the 
peak of the stellar spectrum and therefore 
influences the planetary albedo. 
 
Going from G type towards A type: 
A higher proportion of incident starlight is 
Rayleigh scattered if the spectral peak is 
shifted to blue. 
The albedo of planet is therefore increased 
(more light is reflected). 
The inner edge of HZ moves inward to 
accommodate for this. 
 
Going from G type towards M type: 
A higher proportion of incident starlight is absorbed by H2O, CO2 if the spectral peak is 
shifted to red. 
The albedo of the planet is therefore decreased (more light is being absorbed) 
The inner edge of HZ moves outward to accommodate for this. 
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Where to live long and prosper 
The Sun is near the upper mass limit for continuous 
habitability. 
G and K stars seem like secure places to live, but what about 
M dwarfs? We already know that the peak of their spectral 
energy distribution means the HZ will have to be closer to the 
star. It doesn’t take long to realise that this isn’t ideal – 
impacts from coronal mass ejections (CMEs) and X-ray flare 
irradiation will be more likely in this case. Do M dwarfs have 
any other problems? The answer is yes, as we’re about to 
discuss, but they do have the advantage that there are just so 
many more of them than other stars. They have a statistical 

advantage of hosting life in this sense, but not in others… Let’s talk below about 
what we should do in order to live long and prosper on our exoplanet. 

 
1. Avoid tidal locking 

Rotation of an Earth-like planet becomes tidally locked after 4.5 Gyr at 
orbital distance 

 
(Goldreich & Soter 1966; Peale 1977; Kasting et al 1993; Rasio et al 1996; 
Joshi et al 1997) 

If we find ourselves tidally locked then there will be no proper 
seasons. One side of the planet will be boiling and the other will 
be freezing. This will cause extreme weather between the two 
sides, because of the temperature and pressure 
differences. This is pretty hostile to life… 
unfortunately for our low-mass star friends, this is 
far more of a problem around them because our 
continuously habitable zone will also be within the 
tidally locked region. 

  
 

2. Get a magnetic field! 
A magnetic field helps to protect the planet from stellar activity like coronal mass ejections 
– which is both important directly for life and for atmosphere retention (indirectly for life!). 
It also helps to retain the atmosphere by providing an additional force to any ions. 

 
3. Find the right star 
Below are some conditions to help us find the right star: 
• Massive stars probably don’t live long enough for life to develop on their planets – 

so we can immediately discount them, although we already know they also have 
other problems. 

• The habitable zone will be closer in for M dwarfs than K or G stars, so the planet is 
more likely to be bombarded by CMEs, X-ray flares etc. 
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• CME bombardment can ablate and strip 
atmospheres, so a star that is very active will 
be problematic. 

• X-rays are bad for life. Low mass stars make 
more X-rays when they’re younger than when 
they’re older. M and K type might have higher 
X-ray output for longer into Main Sequence 
than G-type stars (i.e. mass is important too). 

• But younger stars live longer… and there are 
many more of them… 
 
 
 

4. Have the right neighbours 
We want to avoid lots of impacts…some are inevitable but more 
of them (and with higher velocities) will greatly increase the 
chance of wiping out all life. The perihelion velocity of comets 
(which could then cause impacts) can be calculated: 

The HZ radius varies with stellar mass: 

So, the impact energy (related to v2, think of the kinetic energy) in the HZ scales 
inversely with mass. 

i.e., a low mass star is worse in this case. 
 
 

5. Avoid other natural disasters… 
I’m sure you could think up other natural 
disasters that we might wish to avoid, 
another example of this would include 
being too close to a supernova – which 
would immediately wipe out life. We 
don’t have control of when a star would 
go SN, but we do know that there are 
some regions of the galaxy where there 
are lots of stars that will go supernova 
nearby. This means there are some locations in the galaxy that are not prime real 
estate… 
 
Some questions for you: 
1. How does stellar age influence planetary habitability? 
2. How does stellar mass influence planetary habitability? 
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Useful resources: 
* https://iopscience.iop.org/article/10.1088/0004-
637X/769/1/27/pdf#:~:text=Stars%20having%20significantly%20higher%2Dthan,than%20do
%20low%2Dmetallicity%20stars. 
 

 
 


