
 

 

  



Lecture 1 
 
Topics in the course: 
This course is an introduc0on to fluid mechanics. Through these lectures, we will cover 
topics such as: 

- What is the essen0al physics of fluids? 
- What is vor0city? 
- Why do boundary layers form? 
- How do sound waves travel? 
- And what happens when they form a shock? 
- What happens when fluids are unstable? 

 
Introduc0on 
What is a fluid? A fluid is simply something that flows. It does not need to be a liquid – it 
could be a solid or gaseous. Dust or stars colliding may be modelled by fluid equa0ons, and 
both neutral gases and plasma (ionised gas) can be too. 
 
Towards the end of the course, we will talk about forma0on of waves on surfaces. This is 
related to surface tension which owes its behaviour to viscosity. 
 
Fluid equa0ons 
If something can be described as a fluid, we can apply “the fluid equa0ons” to 
mathema0cally describe it. The fluid equa0ons are a set of equa0ons that are based on the 
theore0cal concept of a “fluid element” – a patch of the fluid over which we define local 
variables (e.g. 𝜌, T etc). In order to apply the fluid equa0ons, the following condi0ons must 
be met: the size of the patch is such that: 
 

(1) 𝐿!" ≪ 𝐿#$%"! ≈
&
|∇&|

 

𝐿!": length of the fluid element 
𝐿#$%"!: length scale over which q varies by the order of unity. 
𝑞: any quan0ty 
 
Equa0on (1) means that the fluid element must be small enough that we can ignore 
systema0c varia0ons of quan00es across it. i.e., over a fluid element there must not be any 
varia0on in property e.g. T. 
 

(2) 𝑛	𝐿!") ≫ 1 
𝑛: number density (m-3) 
Equa0on (2) requires that the fluid element be large enough that it contains sufficient 
par0cles to ignore fluctua0ons due to a finite number of par0cles. i.e., there needs to be a 
reasonable number of par0cles so that sta0s0cal representa0on is fair. 
 

(3) 𝐿!" ≫ 𝜆 
𝜆: mean free path 
Equa0on (3) requires that the fluid element is large enough that cons0tuent par0cles 
“know” about local condi0ons through colliding with each other. This is only needed for 
collisional fluids (which everything in this course will be!). 



 
NOTE: 

1. Fluid elements are just conceptual quan00es. 
2. 𝐿!"  doesn’t enter the fluid equa0ons BUT condi0ons (1)-(3) limit the applicability of 

the equa0ons. 
 
A collisional fluid at a given temperature (T) and density (𝜌)	will have a well-defined 
distribu0on of par0cle speeds in the local rest frame and hence, it has a corresponding 
pressure. Thus, one can derive an equa0on of state for a collisional fluid that fulfils 
condi0ons (1)-(3). 
 
Choosing the best descrip0on - Eulerian vs Lagrangian methods 
For a non-equilibrium situa0on, if we wish to measure temperature as a func0on of posi0on 
and 0me, we can choose from two methods: Eulerian and Lagrangian. Let’s consider them 
by imagining we have a river and wish to measure the temperature varia0on in the water 
with 0me. 
 

(1) Eulerian Method (“grid method”): 
What we need to do: 
- Set up a grid: r = (x, y) 
- Place thermometer at each point in the grid, T(x, y) 
- Read thermometers over 0me T(r, t) 
 
In this method: 
• Independent variables (r, t) 
• Varia0on with 0me is par0al deriva0ve: 𝜕𝑇 𝜕𝑡0  
• Evaluated at a fixed posi0on: r 

 
(2) Lagrangian Method (“boats method” or co-moving method): 
What we need to do: 
- Many boats, labelled “a” each with a thermometer, T(a, t) 
- Release them in a river, recover them later. 
 
In this method: 
• Independent variables (a, t) 
• Posi0on now depends on 0me: r = r(a, t) 
• Varia0on with 0me is a full deriva0ve: 𝑑𝑇 𝑑𝑡0  

 
 
Summary 
Eulerian: 

• The world is viewed from a fixed posi0on, 𝜕𝑄 𝜕𝑡0  
• r and t are independent 

Lagrangian: 

• The world is viewed from comoving with fluid, 𝑑𝑄 𝑑𝑡0  



• r depends on t 
 
Advantages and Disadvantages 

Eulerian: Good for steady state: 𝑑𝑄 𝑑𝑡0 = 0 
Lagrangian: useful when behaviour of individual elements macer (usually don’t) 
 
 
 

Lecture 2 
 
Rela0ng Eulerian and Lagrangian descrip0ons: 
Let’s start with a mathema0cal reminder! Consider a func0on Q(t), the defini0on of 
differen0a0on is: 

𝑑𝑄
𝑑𝑡 = lim

*+→-
8
𝑄(𝑡 + 𝛿𝑡) − 𝑄(𝑡)

𝛿𝑡 < 

 
Now if we take Q as a func0on of two variables we find: 
 

𝑑𝑄
𝑑𝑡 = lim

*+→-
8
𝑄(𝒓 + 𝛿𝒓, 𝑡 + 𝛿𝑡) − 𝑄(𝒓, 𝑡)

𝛿𝑡 < 

 
𝒓: posi0on of a fluid element at a 0me, 𝑡 
𝒓 + 𝛿𝒓: posi0on of a fluid element at 0me 𝑡 + 𝛿𝑡 

 
 
 
 
This feels difficult to evaluate because we 
can only take varia0ons one at a 0me, so 
we should split them up: 
 
 
 
 

Looking at the numerator of ./
.+

: 
 
𝑄(𝒓 + 𝛿𝒓, 𝑡 + 𝛿𝑡) − 𝑄(𝒓, 𝑡) = 	𝑄(𝒓 + 𝛿𝒓, 𝑡 + 𝛿𝑡) 	− 𝑄(𝒓, 𝑡) + 𝑄(𝒓, 𝑡 + 𝛿𝑡) − 𝑄(𝒓, 𝑡 + 𝛿𝑡) 

              = 𝑄(𝒓, 𝑡 + 𝛿𝑡) − 𝑄(𝒓, 𝑡) + 𝑄(𝒓 + 𝛿𝒓, 𝑡 + 𝛿𝑡) − 𝑄(𝒓, 𝑡 + 𝛿𝑡) 
The first term shows the varia0on in 0me at a fixed r and the second gives the varia0on in r 
at fixed 𝑡 + 𝛿𝑡. In other words, we can deal the varia0ons in posi0on and 0me separately. 

• 𝑄(𝑡 + 𝛿𝑡) − 𝑄(𝑡)  at fixed 𝒓 
• 𝑄(𝒓 + 𝛿𝒓) − 𝑄(𝒓)  at fixed 𝑡 + 𝛿𝑡 

 
Remember the Taylor expansion: 

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) + ⋯ 
We are going to use this to expand our func0ons 𝑄(𝑡 + 𝛿𝑡) and 𝑄(𝒓 + 𝛿𝒓). 



We can then write the numerator as an expansion in 𝛿𝒓 and 𝛿𝑡, remember: 

𝑄(𝑡 + 𝛿𝑡) = 𝑄(𝑡) + 𝛿𝑡
𝜕𝑄
𝜕𝑡 + ⋯ 

 
𝑄(𝒓 + 𝛿𝒓) = 𝑄(𝒓) + 𝛿𝒓. 𝛁𝑄 +⋯ 

 
and by trunca0ng and taking only the linear terms: 

𝑄(𝑡 + 𝛿𝑡) − 𝑄(𝑡) ≈  𝛿𝑡 0/
0+

 
𝑄(𝒓 + 𝛿𝒓) − 𝑄(𝒓) ≈ 𝛿𝒓. 𝛁𝑄 

 
And adding these two equa0ons gives the numerator of the original equa0on: 

𝑄(𝒓 + 𝛿𝒓, 𝑡 + 𝛿𝑡) − 𝑄(𝒓, 𝑡) ≈ 𝛿𝑡
𝜕𝑄
𝜕𝑡 + 𝛿𝒓. 𝛁𝑄|+1*+ 

                  ≈ 𝛿𝑡 0/
0+
+ 𝛿𝒓. G𝛁𝑄 + 𝛿𝑡 0(𝛁/)

0+
H * 

 
Bringing everything together: 

𝑑𝑄
𝑑𝑡 = lim

*+→-
8
𝑄(𝒓 + 𝛿𝒓, 𝑡 + 𝛿𝑡) − 𝑄(𝒓, 𝑡)

𝛿𝑡 < 

 

≈ lim
*+→-

I
𝛿𝑡 𝜕𝑄𝜕𝑡 + 𝛿𝒓. J𝛁𝑄 + 𝛿𝑡

𝜕(𝛁𝑄)
𝜕𝑡 K

𝛿𝑡 L 

 

≈
𝛿𝑡
𝛿𝑡
𝜕𝑄
𝜕𝑡 +

𝛿𝒓
𝛿𝑡 . J𝛁𝑄 + 𝛿𝑡

𝜕(𝛁𝑄)
𝜕𝑡 K 

 

≈
𝜕𝑄
𝜕𝑡 +

𝛿𝒓
𝛿𝑡 . 𝛁𝑄 

 
 
 
The dot product shows the projec0on of 𝛁𝑄 onto the direc0on of mo0on of the fluid 
element (the projec0on of the spa0al changes of 𝑄). 
 
Hence, if the flow velocity is u: 

𝑑𝑄
𝑑𝑡 =

𝜕𝑄
𝜕𝑡 + 𝒖. 𝛁𝑄 

 
 
 
 
 
 
This equa0on is used to transform between Eulerian and Lagrangian deriva0ves. 
 
 

evaluated at 𝑡! 

evaluated at 𝑡 + 𝛿𝑡! 

We can drop this off as this term 
is very small compared to the 
others. 

This is just a velocity! 

Lagrangian deriva0ve 
(thermometer on the 
boat!) Eulerian deriva0ve 

(riverbed 
thermometer!) 

“convec0ve”/ “advec0ve” 
deriva0ve – due to the fact 
that the boat has moved to 
somewhere with a different 
temperature. 

* This step is to ensure that they’re evaluated at the same 0me and is done again by Taylor expansion. 
 



NOTE: 
1. In steady state, 0/

0+
= 0. The quan0ty 𝑄, at the same place, does not change with 

0me. 
2. In steady state situa0ons, 𝑄 will only be unchanging in 0me if the observer doesn’t 

move. If the observer does move, then 𝑄 may or may not be unchanging. 
3. ./

.+
= 0 ONLY if the situa0on is steady state and uniform. 

 
Streamlines and stream func0ons: 
If we want to visualise the flow of a fluid, we could do this in mul0ple ways. We might: 

• Draw a vector plot, i.e. draw arrows which show the direc0on and magnitude of the 
velocity field, for example in the arrow size or colour. 

• We could use streamlines, which are lines in the flow field that are tangen0al to the 
velocity everywhere. 

 
----- 
Example: for the velocity field (or flow that can be described by) 𝒖 = (𝑥5𝑦,−𝑥𝑦5): 
 
A vector plot looks like (a) in the figure below, where the colour represents the magnitude of 
the velocity. A plot of the streamlines is shown in (b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
You can think of streamlines as lines that trace out the flow of a fluid. 
----- 
 
We can write a 2D flow 𝒖(𝑥, 𝑦) in terms of a scalar 𝜓 (known as a stream func0on) such 
that: 
 
For an incompressible fluid, sa0sfying 𝛁. 𝒖 = 𝟎, we can always represent 𝒖 as: 
 𝒖 = −𝛁 × (	𝜓𝒛S)  
Since 𝛁. 𝒖 = 𝛁. (𝛁 × (	𝜓𝒛S)) = 𝟎,    ∀	𝜓 
 
We take 𝜓 to be a func0on of x and y, then: 
𝒖 = −U06

07
𝒙W − 06

08
𝒚WY  

(a)                        (b) 



i.e., 𝑢8 = − 06(8,7)
07

 and 𝑢7 =
06(8,7)
08

 

 
we may wish to do this because streamlines can be easier to plot than vector plots. 
 
A streamline is defined as a curve that has u in the tangen0al direc0on. Along streamlines: 
𝑑𝑥
𝑢8

=
𝑑𝑦
𝑢7

= 1 

⟶ 𝑢8𝑑𝑦 − 𝑢7𝑑𝑥 = 0 

−
𝜕𝜓
𝜕𝑦 𝑑𝑦 −

𝜕𝜓
𝜕𝑥 𝑑𝑥 = 0 

𝑑𝜓 = 0 so 𝜓 is a constant along streamlines. 
We can therefore plot streamlines as a contour. 
 
Streamfunc0ons. (𝜓) are mathema0cal equa0ons that 
describe the streamline in a flow. 
 
Returning to our example of 𝒖 = (𝑥5𝑦,−𝑥𝑦5), we can now go about plojng the 
streamlines (even though we’ve already seen the answer in (b) of the example, thanks to 
Mathema0ca’s StreamPlot func0on!): 

𝑢8 = − 06(8,7)
07

 and 𝑢7 =
06(8,7)
08

 so: 

𝜓 = −\𝑢8 𝑑𝑦 = \𝑢7 𝑑𝑥 

𝜓 = −\𝑢8 𝑑𝑦 = \𝑦𝑥5 𝑑𝑦 = −
𝑥5	𝑦5

2 + 𝐶(𝑥) 

𝜓 = \𝑢7 𝑑𝑥 = \−𝑥𝑦5 𝑑𝑥 = −
𝑥5	𝑦5

2 + 𝐷(𝑦) 

 Where C and D are some constants. C and D must = 0. 

𝜓 = −
𝑥5	𝑦5

2  

Set this equal to some value eg 

3 = −
𝑥5	𝑦5

2  

Solve for x and plot… 
 
The red curves show 𝜓 = 3 and blue shows 𝜓 = 5. The 
streamfunc0on 𝜓 is a constant along a streamline but 
not across streamlines. 
 
 
Reminder: 

• If 𝑄 is a scalar: 

𝒖. 𝛁𝑄 = 𝑢8
𝜕𝑄
𝜕𝑥 + 𝑢7

𝜕𝑄
𝜕𝑦 + 𝑢:

𝜕𝑄
𝜕𝑧  

This will give you a scalar – both 𝒖 and 𝛁𝑄 are vectors so the dot product will give a 
scalar. 
 



• If, however, 𝑄 is a vector: (𝒖. 𝛁)	is an operator which acts on 𝑸 i.e. 
	

(𝒖. 𝛁)𝑸 = 𝑢8
0𝑸
08
+ 𝑢7

0𝑸
07
+ 𝑢:

0𝑸
0:
	

(𝒖. 𝛁)𝑸 = U𝑢8
0/!
08

+ 𝑢7
0/!
07

+ 𝑢:
0/!
0:
Y 𝒙W + U𝑢8

0/"
08

+ 𝑢7
0/"
07

+ 𝑢:
0/"
0:
Y 𝒚W +

U𝑢8
0/#
08
+ 𝑢7

0/#
07
+ 𝑢:

0/#
0:
Y 𝒛S	

	
This will give you a vector! The scalar operator (𝒖. 𝛁)	acts on the vector	𝑸	and so, 
will give a vector! 

 
Ques0on 1: The temperature varia0on in a river is 𝑇(𝑥, 𝑦) = 𝑒8 sin 𝑡 and the river flows 
with velocity 𝒖(𝑥, 𝑦) = (𝑥𝑡5, 0). Write down both the Lagrangian and Eulerian deriva0ves. 
 
Answer 1:  
Eulerian:  

𝜕𝑇
𝜕𝑡 = 𝑒8 cos 𝑡 

Lagrangian: 
𝑑𝑇
𝑑𝑡 =

𝜕𝑇
𝜕𝑡 +

(𝒖. 𝛁𝑇) =
𝜕𝑇
𝜕𝑡 + 𝑢8

𝜕𝑇
𝜕𝑥 + 𝑢7

𝜕𝑇
𝜕𝑦 

         = 𝑒8 cos 𝑡 + 𝑥𝑡5𝑒8 sin 𝑡 
 
Ques0on 2: An air flow has velocity 𝒖(𝑥, 𝑦) = (𝑦5, 0) and temperature 𝑇(𝑥, 𝑡) = 𝑥 sin 𝑡. 
Draw curves of 𝑇(𝑡)	for a few values of 𝑥. Use this to help you draw a surface plot of	𝑇(𝑥, 𝑡). 
Then sketch the velocity vectors on the (𝑥, 𝑦) plane and calculate the temperature varia0on 
with 0me: 

(i) as seen at a fixed posi0on, 
(ii) as experience by a dust par0cle carried in the air. 

 
Answer 2:  
Drawing T(t) for a few values of x just involved sketching sine curves with various 
amplitudes. To convert this into a surface plot, we should draw another axis (x) and spread 
these sine curves along it. 

 
The velocity vectors in the x-y plane can be sketched by no0ng that there is no component 
of velocity in the y direc0on, so all arrows should point parallel to the x-axis. The x-



component of velocity increases with increasing y, so the arrows should get bigger as we 
increase y. 
 
 
To calculate the varia0on in T with 0me: 

(i) 0<
0+
= 𝑥 cos 𝑡 

(ii) .<
.+
= 0<

0+
+ (𝒖. 𝛁𝑇) = 0<

0+
+ 𝑢8

0<
08
+ 𝑢7

0<
07

 

          .<
.+
= 𝑥 cos 𝑡 + 𝑦5 sin 𝑡 

         
Ques0on 3: Sketch the 2D flow 𝒖(𝑥, 𝑦) = (𝑥, −𝑦). 
 
Answer 3:  

𝑑𝑥
𝑢 8

=
𝑑𝑦
𝑢7

 

Therefore 	
𝑑𝑥
𝑥 =

𝑑𝑦
−𝑦	

So 

\
𝑑𝑥
𝑥 = \

𝑑𝑦
−𝑦 

ln 𝑥 = − ln 𝑦 + 𝐶 
ln 𝑥 = − ln 𝑦 + ln𝐾 
ln 𝑥 = ln(𝑦=>) + ln𝐾 

ln 𝑥 = ln j
𝐾
𝑦k 

𝑥 =
𝐾
𝑦  

Where C and K are constants. This can then be sketched. 
 
 

Lecture 3 
 
“Spring0me in Antarc0ca”: 

 
 



The ice melts in spring and water flows off the ice shelf into the sea. The water flows with a 
constant speed, 𝑢8 therefore 𝒖 = (𝑢8 , 0, 0). 
 
This flow carries plankton with it. The whales eat the plankton, but only if alive and the 
plankton dies if the temperature starts to drop. 
 

𝑇 = 𝑒?+ sin 𝑥 + 𝑇-    equa%on 1 
 
 
 
 
 
Equa0on 1 describes the water temperature. 
 
Drawing this func0on:  

 

 
 
 

So, the temperature varia0on experienced by whales: 
𝜕𝑇
𝜕𝑡 = 𝑘𝑒?+ sin 𝑥 

 
“cold” whales:    𝑥 = 𝜋: 0<

0+
= 0 i.e. steady state. 

“warm” whales:  𝑥 = @
5
:  0<
0+
= 𝑘𝑒?+ 

 
So, what is the temperature varia0on experienced by the plankton? 

𝑑𝑇
𝑑𝑡 =

𝜕𝑇
𝜕𝑡 +

(𝒖. 𝛁𝑇) =
𝜕𝑇
𝜕𝑡 + 𝑢8

𝜕𝑇
𝜕𝑥 + 𝑢7

𝜕𝑇
𝜕𝑦 + 𝑢:

𝜕𝑇
𝜕𝑧  

𝑑𝑇
𝑑𝑡 =

𝜕𝑇
𝜕𝑡 + 𝑢8

𝜕𝑇
𝜕𝑥 + 0 + 0 

𝑑𝑇
𝑑𝑡 = 𝑘𝑒?+ sin 𝑥 + 𝑢8

𝜕𝑇
𝜕𝑥 

𝑑𝑇
𝑑𝑡 = 𝑘𝑒?+ sin 𝑥 + 𝑢8𝑒?+ cos 𝑥 
𝑑𝑇
𝑑𝑡 = 𝑒?+(𝑘 sin 𝑥 + 𝑢8 cos 𝑥) 

0.5 1.0 1.5 2.0 2.5 3.0

5

10

15

20

25

warming of water by 
the Sun, k > 0. 

spa0al varia0on of T 

ambient T 

T 

T0 

𝜋/2 𝜋 
𝑥 

𝑡 = 𝑡1 

𝑡 = 𝑡0 



 
When .<

.+
< 0, the temperature is dropping for the plankton, and they die. Then the whales 

are hungry! 
When does .<

.+
= 0? 

𝑘 sin 𝑥 = −𝑢8 cos 𝑥 
tan 𝑥 = −𝑢8/𝑘 

 
NOTE: 𝑢8 and 𝑘 are posi0ve constants, therefore, we are looking for nega0ve values of 
tan 𝑥. 
 
Take 𝑢8/𝑘 ⟶ 0: slow flow, 𝑢8 is small so 𝑥A = 𝜋 (the warm flow)  
Take 𝑢8/𝑘 ⟶ ∞: fast flow, 𝑢8 is big so 𝑥A =

@
5
  (the cold flow) 

 
 
 
We’ve modelled a rate of flow: 𝑢8 
We’ve modelled a rate of hea0ng: 𝑘 
 
 
 
 
 
 
The ra0o of 𝑢8/𝑘 is a ra0o of two rates. Depending on if it’s a large or small ra0o, the 
plankton will travel a short or long distance before they die. 
 
Pictorially: 

0.5 1.0 1.5 2.0 2.5 3.0

- 1.0

- 0.5

0.5

1.0

1.5

𝜋/2 𝜋 
𝑥 𝑢!	𝐶𝑜𝑠[𝑥] 

𝑘	𝑆𝑖𝑛[𝑥] 

𝑘	𝑆𝑖𝑛[𝑥] + 𝑢!	𝐶𝑜𝑠[𝑥] 
 

𝑥"	 

- 3 - 2 - 1 1 2 3

- 6

- 4

- 2

2

4

6

𝜋/2 𝜋 
𝑥 

“warm” 

“cold” 



 
NOTE: 𝑢8 = 𝑥/𝑡 

• For a slow flow, it takes a long 0me to travel the distance 𝑥 = 0 to 𝑥 = 𝜋. 
• For a fast flow, it takes a short 0me to travel this distance. 

 
Plankton can travel different paths over the surface. Thinking about the temperature 
varia0on over the surface – i.e. experienced by the plankton in the different paths: 

- Fast flow: plankton reach 𝑥 = 𝜋 before the water temperature has had 0me to 
increase. 
- Slow flow: plankton experience a rising temperature because the water is heated, 
not because of the flow. 

 
The graph shows the difference between the temperature varia0on experienced by the 
whales vs the plankton. i.e. Eulerian vs Lagrangian. 
 
Aside on divergence: 
Consider a gas flow 𝒖 through a box with centre P. 

 
At P, the gas has velocity 𝒖 = s𝑢8 , 𝑢7 , 𝑢:t = 𝒖(𝒓, 𝑡). Now consider how the velocity varies 
away from this point.  



 
 
At the back face:  𝑢B ≈ 𝑢8 −

∆8
5
0D!
08

 
 
At the front face:   𝑢E ≈ 𝑢8 +

∆8
5
0D!
08

 
 
 
Volume of gas crossing back face per second: 

𝑉
𝑡 =

𝑑. 𝐴
𝑡  

 

= (𝑢8 −
1
2
𝜕𝑢8
𝜕𝑥 ∆𝑥)∆𝑦∆𝑧 

 
Volume of gas crossing front face per second: 

= (𝑢8 +
1
2
𝜕𝑢8
𝜕𝑥 ∆𝑥)∆𝑦∆𝑧 

 
Net volume/second in the 𝑥 direc0on = 0D!

08
∆𝑥∆𝑦∆𝑧 

 
By analogy, for the 𝑦 direc0on = 0D"

07
∆𝑥∆𝑦∆𝑧 

        for the 𝑧 direc0on = 0D#
0:
∆𝑥∆𝑦∆𝑧 

 
Total net volume/second: 

𝑉< 𝑠𝑒𝑐0 = z
𝜕𝑢8
𝜕𝑥 +

𝜕𝑢7
𝜕𝑦 +

𝜕𝑢:
𝜕𝑧 {∆𝑥∆𝑦∆𝑧 

 
𝑉< 𝑠𝑒𝑐0 = (𝛁. 𝒖)	∆𝑥∆𝑦∆𝑧 

 
 
 
 
The divergence shows how the flux of the gas behaves: 

(𝛁. 𝒖) < 0: Gas flows in (SINK) 

Using a Taylor expansion 
and keeping only linear 
terms. 

Evaluate 𝑢8 at P 

Volume/second = distance moved/second * 
area of the face 

Divergence of 𝒖 gives the volume of 
the gas emerging per second from a 
unit volume. 

Mul0ply by the volume element. 

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎)
+ ⋯ 

 



(𝛁. 𝒖) > 0: Gas flows out (SOURCE) 
 
 
 
 
 
We can find the total flux: 

Φ =~(𝛁. 𝒖)	𝑑𝑉
F

 

We could, however, think of it as the amount of fluid that crosses each surface element, dS, 
in 0me dt. 

 
Distance swept out by the surface = 𝒖	. 𝒏W	𝑑𝑡 
Volume that flows through dS each second: = (𝒖	. 𝒏W)	𝑑𝑆 
Add up all of these: ∬ 𝒖. 𝑑𝑺G  
 
These must be equal so: 

Φ =� 𝒖. 𝑑𝑺
G

=~(𝛁. 𝒖)	𝑑𝑉
F

 

 
 
 
 
 
How do we interpret this for a fluid? It tells us the volume of fluid emerging per second. 
 
This emerging volume carries mass. The fluid flows at speed u through 
an area A. The volume swept out per second by this flow is uA: 
volume	/	second	 = 	𝑢	𝐴 
	density = 𝜌 = mass	/	volume 
 
So mass	/	second	 = 	 (mass	/	volume)	(volume	/	second) 	= 	𝜌	𝑢	𝐴 
 
If 𝐴 = 1 (i.e. unit area) 

𝑚𝑎𝑠𝑠
𝑠𝑒𝑐𝑜𝑛𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ	𝑢𝑛𝑖𝑡	𝑎𝑟𝑒𝑎 = 𝑚𝑎𝑠𝑠	𝑓𝑙𝑢𝑥 = 	𝜌𝑢 

 

(integrate (𝛁. 𝒖)	over volume) 

DIVERGENCE THEOREM! 

This applies to any flux, water 
in a hose pipe, magne0c field 
on stars, sheep in fields… 

𝑑𝑺 = 𝑑𝑆	𝒏W 



Question 4a: If a steady-state, 2D velocity field 𝒖 is divergence-free and 𝑢8 = 𝑎(𝑥5 − 𝑦5) 
for some constant 𝑎, what must 𝑢7 be? 

Answer 4a: 

𝛁. 𝒖 = 0 

𝜕𝑢8
𝜕𝑥 +

𝜕𝑢7
𝜕𝑦 = 0 

𝜕𝑢7
𝜕𝑦 = −

𝜕𝑢8
𝜕𝑥 = −𝑎(2𝑥) 

𝑢7 = \−2𝑎𝑥	𝑑𝑦 

𝑢7 = −2𝑎𝑥𝑦 + 𝐶(𝑥) 

Where C is an integration constant that may depend on x. 

Question 4b: Determine a form for the stream function for this flow if C(x)=0.  

Answer 4b:  

𝑢8 = − 06(8,7)
07

 and 𝑢7 =
06(8,7)
08

 so: 

𝜓 = −\𝑢8 𝑑𝑦 = \𝑢7 𝑑𝑥 

𝜓 = −\𝑢8 𝑑𝑦 = \𝑎(𝑥5 − 𝑦5) 𝑑𝑦 = −𝑎(𝑥5𝑦 −
	𝑦)

2 ) + 𝐷(𝑥) 

𝜓 = \𝑢7 𝑑𝑥 = \−2𝑎𝑥𝑦 𝑑𝑥 = −2𝑎𝑦
𝑥5	
2 + 𝐸(𝑦) = −𝑎𝑦𝑥5 + 𝐸(𝑦) 

Comparing these: 

𝜓 = −𝑎𝑥5𝑦 + 𝑎
	𝑦)

2 + 𝐷(𝑥) = −𝑎𝑦𝑥5 + 𝐸(𝑦) 

𝐷(𝑥) = 0 and 𝐸(𝑦) = 𝑎 	7$

5
. 

𝜓 = −𝑎𝑦𝑥5 + 𝑎
	𝑦)

2 = 𝑎𝑦 z𝑥5 −
	𝑦5

2 { 

 
 
 
 
 



Lecture 4 
 
Consider a volume V whose surface S is a patchwork of surface elements dS. A flow u 
through the surface has a component along the outward normal = 𝑢 cos 𝜃 (i.e. the 
projec0on onto that par0cular outward normal of the velocity). 

               
Every second: 

- This flow travels a distance 𝑢 cos 𝜃 in the direc0on of dS i.e. length = 𝑢 cos 𝜃. 
- A mass, 𝑚 = 𝜌𝑉 = 𝜌 × 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑎𝑟𝑒𝑎 passes through the surface dS. 

 
𝑚 = 𝜌𝑉 = 𝜌 × 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑎𝑟𝑒𝑎 = 𝜌	𝑢 cos 𝜃 𝑑𝑆 = 𝜌	𝒖	. 𝑑𝑺 

 
The total rate at which mass flows through the surface S is the sum of all the elements: 

−� 𝜌	𝒖	. 𝑑𝑺I
I

= −� 𝜌	𝒖	. 𝑑𝑺
G

= −~ 𝛁	. (𝜌𝒖)	𝑑𝑉
F

 

 
 
 
In the absence of sources or sinks of mass, this must be equal to the rate of change of mass 
of fluid in V: 

𝜕𝑀
𝜕𝑡 𝑖𝑛	𝑉 =~

𝜕𝜌
𝜕𝑡F
	𝑑𝑉 =~

𝜕
𝜕𝑡 (𝜌𝑑𝑉)F

 

 
 
 
 

i.e.  0
0+∭ 𝜌𝑑𝑉	F

!
= −∭ 𝛁	. (𝜌𝒖)	𝑑𝑉F  

 
This is for the same volume so: 

𝜕
𝜕𝑡~ 𝜌𝑑𝑉	

F
+~ 𝛁	. (𝜌𝒖)	𝑑𝑉

F
= 0 

~ j	
𝜕𝜌
𝜕𝑡 + 𝛁	.

(𝜌𝒖)	k 𝑑𝑉	
F

= 0,				∀	𝑑V 

Hence: 
𝜕𝜌
𝜕𝑡 + 𝛁	.

(𝜌𝒖) = 0 

 
 
We could also write the Lagrangian form: 

Nega0ve because 
it is outward flow! 

Recall: can always swap 
spa0al and temporal 
terms because they don’t 
depend on each other. 

This is a mass, because 
𝑚 = 𝜌𝑉 

This is a par0al because it’s 
rate of change of mass 
from a fixed point. 

NOTE:  != is used here 

to mean “must equal”. 

Eulerian form of the con0nuity 
equa0on/conserva0on of mass. 

= 𝑢 cos 𝜃 

Recall: 𝑢 cos 𝜃 = 𝒖. .𝑺|.𝑺| 
 



𝑑𝜌
𝑑𝑡 =

𝜕𝜌
𝜕𝑡 + 𝒖. 𝛁𝜌 

𝑑𝜌
𝑑𝑡 = −𝛁. (𝜌𝒖) + 𝒖	. 𝛁𝜌 

𝑑𝜌
𝑑𝑡 = −𝜌(𝛁. 𝒖) − 𝒖. 𝛁𝜌 + 𝒖	. 𝛁𝜌 

 
𝑑𝜌
𝑑𝑡 + 𝜌

(𝛁. 𝒖) = 0 

 
NOTE: 

(1) The defini0on of incompressible flows: .K
.+
= 0. So, density is in steady state and 

uniform. 
(2) This implies that 𝛁. 𝒖 = 0 for incompressible fluids, i.e. divergence free. 
(3) .K

.+
= 0 for fluid elements. Density need not be conserved overall. 

(4) 𝛁. 𝒖 = 0 can be very useful: only need one component to get the other in 2D! 
 
 
Ques0on 5: If you have a steady, incompressible 2D flow 𝒖 = (𝑢8 , 𝑢7) where 𝑢7 = −sinh 𝑦, 
use the equa0on of conserva0on of mass to get 𝑢8. 
Answer 5: 
Steady state so:  0K

0+
= 0 

Incompressible so:  .K
.+
= 0    =>   𝛁. 𝒖 = 0 

 
𝜕𝑢8
𝜕𝑥 +

𝜕𝑢7
𝜕𝑦 = 0 

−
𝜕𝑢8
𝜕𝑥 =

𝜕𝑢7
𝜕𝑦 =

𝜕(− sinh 𝑦)
𝜕𝑦 = −cosh 𝑦 

𝜕𝑢8
𝜕𝑥 = cosh 𝑦 

𝑢8 = \cosh 𝑦 𝑑𝑥 =𝑥 cosh 𝑦 + 𝑢8(0) 

 
Drawing: if 𝑢8(0) = 0… 
𝑢8 = 𝑥 cosh 𝑦 so 𝒖 = (𝑥 cosh 𝑦 ,− sinh 𝑦). 
   
 
 
 
 
 
 
 
 
 
 

Lagrangian form of the con0nuity 
equa0on/conserva0on of mass. 

Reminder:  



Plojng the vectors:  
- Along the y axis where x = 0, 𝒖 = (0,− sinh 𝑦). 

o So, when y is posi0ve it points towards the origin, 
o when y is nega0ve it points towards the origin. 
o Its magnitude is bigger at large y than small y. 

- Along the x axis where y = 0 
o 𝒖 = (0,0). 

- Along any other constant y, ux is big at large |x| and small at small |x| 
 
If we put this all together, we get: 
 

 
 
More elegantly: 

𝑑𝑥
𝑢8

=
𝑑𝑦
𝑢7

 

𝑢7
𝑢8

=
𝑑𝑦
𝑑𝑥 = −

sinh 𝑦
𝑥 cosh 𝑦 

i.e. 

\
cosh 𝑦
sinh 𝑦 𝑑𝑦 = −\

1
𝑥 𝑑𝑥 

ln(sinh 𝑦) = − ln 𝑥 + 𝑐 

ln(sinh 𝑦) = ln j
1
𝑥k + 𝑐 

𝑥	~	
1

sinh 𝑦 

 

Question 6: Under what condition does this velocity field represent an incompressible flow 
that conserves mass? 

𝒖 = (𝑢8 , 𝑢7 , 𝑢:) 

Where 𝑢8 = 𝑎>𝑥 + 𝑏>𝑦 + 𝑐>𝑧,	𝑢7 = 𝑎5𝑥 + 𝑏5𝑦 + 𝑐5𝑧	and	𝑢: = 𝑎)𝑥 + 𝑏)𝑦 + 𝑐)𝑧	and as bs 
and cs are constants. 

(streamline) 

(ignoring the constant) 

- 3 - 2 - 1 1 2 3

- 1.0

- 0.5

0.5

1.0

- 1.0 - 0.5 0.0 0.5 1.0
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- 0.5

0.0

0.5
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Answer 6: 
Conserva0on of mass: .K

.+
+ 𝜌(𝛁. 𝒖) = 0 

And incompressible so  𝛁. 𝒖 = 0 i.e.: 
𝜕𝑢8
𝜕𝑥 +

𝜕𝑢7
𝜕𝑦 +

𝜕𝑢:
𝜕𝑧 = 0 

𝜕
𝜕𝑥
(𝑎>𝑥 + 𝑏>𝑦 + 𝑐>𝑧) +

𝜕
𝜕𝑦 (𝑎5𝑥 + 𝑏5𝑦 + 𝑐5𝑧) +

𝜕
𝜕𝑧 (𝑎)𝑥 + 𝑏)𝑦 + 𝑐)𝑧) = 0 

 
𝑏>,	𝑐>,	𝑎5,	𝑐5,	𝑎),	𝑏)	can take any value, since they are constants and these terms will = 0 
when the partials are taken. Leaving: 

𝜕
𝜕𝑥
(𝑎>𝑥) +

𝜕
𝜕𝑦 (𝑏5𝑦) +

𝜕
𝜕𝑧 (𝑐)𝑧) = 0 

𝑎> + 𝑏5 + 𝑐) = 0 
 
At least one of these constants must be negative, so that these can sum to 0. 
 

Question 7: Consider steady incompressible flow along a tube. The speed is u1 at A1 and u2 
at A2. If A1 = 1m2 what must A2 be in order that the flow doubles in speed by the time it 
reaches A2?  

 

Answer 7: 
What can we say about this scenario? 
Steady state: 0

0+
= 0 so the conserva0on of mass equa0on simplifies: 

𝜕𝜌
𝜕𝑡 + 𝛁	.

(𝜌𝒖) = 0 

𝛁	. (𝜌𝒖) = 0 
And also, incompressible so 𝛁	. 𝒖 = 0: 

𝛁	. (𝜌𝒖) = 𝜌𝛁	. 𝒖 + 𝒖. 𝛁𝜌	 = 𝒖. 𝛁𝜌 = 0 
 
Using the divergence theorem:	∯ 	𝒖	. 𝑑𝑺G =∭ 𝛁	. 𝒖	𝑑𝑉F 	

𝑢5𝐴5 − 𝑢>𝐴> = 0 
 
Therefore, if 𝑢5 = 2𝑢> then 𝐴5 =

D%L%
D&

= L%
5

 

 
 



Conserva0on of momentum: 
Rate of change of momentum = sum of forces 
 
What are the forces ac0ng on a parcel of fluid? 

- Put a surface in a fluid and there is a momentum flux across it (one 
from each side). 

This is purely a consequence of thermal proper0es, NOT related to bulk 
proper0es! 
These are small scale thermal veloci0es – i.e. they cancel out from both 
sides, but we are considering only one. 
 
Microscopically (in a perfect gas): 

- Finite temperature imparts molecules with random mo0ons. 
- The pressure is the associated (one sided) momentum flux. 

 
(If we have a truly isothermal gas…) 
Since these mo0ons are isotropic, the momentum flux locally is: 

- Independent of surface orienta0on. 
- Always perpendicular to the surface (parallel ones aren’t carrying momentum 

through it). 
 
Quick check on units: 

- Pressure is a force per area: 𝑝 = 𝐹/𝐴 
- Momentum flux is the rate of flow of momentum: MNM!O+DM #!$NO.⁄

L
 

- Force is a rate of change of momentum. 
 
Pressure: 
Consider forces between elements: for collisional fluids, this 
means there are forces between par0cles/within the field – 
these forces relate to local temperature. Taking any surface 
placed within a fluid, there is a momentum flux across it – 
par0cle travel through the surface due to microscopic proper0es. 
 
NOTE: 

(1) The thermal pressure is associated with random mo0ons in the fluid which are 
isotropic. It is a scale. 

(2) The ram pressure is associated with bulk mo0ons of the fluid – only a surface whose 
normal has some component along the direc0on of the flow feels the ram pressure. 

 
 
 
 
 
 
 
 

 



Lecture 5 
 
Consider a lump of fluid subject to gravity and the inward pressure of the surrounding fluid. 
We care about forces ac0ng along the direc0on of 𝒏W: 
 
Pressure is a force/area: 

𝑭IO+ = −𝑝𝑑𝑺I  
 

 
 
The component along 𝒏W is: 

𝑭IO+	. 	𝒏W 		= −𝑝𝑑𝑺I 	. 𝒏W 
 
and we care about all of these, therefore integra0ng: 

𝑭IO+	. 	𝒏W +N+%" 		= −� 𝑝𝑑𝑺I 	. 𝒏W
G

= −� 𝑝	𝒏W	. 𝑑𝑺I
G

= −~ 𝛁	. (𝑝𝒏W	)𝑑𝑉
F

 

we also have an externally applied force: 

𝑭!8+	. 	𝒏W 		=~ 𝜌𝒈	. 𝒏W	𝑑𝑉
F

 

here this is just gravity, though we could also add other forces eg viscosity, magne0c forces 
etc. 
 
The total momentum in the volume V is: 

~ 𝜌𝒖	𝑑𝑉
F

 

The rate of change of this along 	𝒏W  is: 

z
𝑑
𝑑𝑡 	~ 𝜌𝒖	𝑑𝑉

F
{	. 	𝒏W  

Hence, the equa0on of mo0on (EOM) in direc0on 	𝒏W  is: 

z
𝑑
𝑑𝑡 	~ 𝜌𝒖	𝑑𝑉

F
{	. 	𝒏W = −~ 𝛁	. (𝑝𝒏W	)𝑑𝑉

F
+~ 𝜌𝒈	. 𝒏W	𝑑𝑉

F
 

 
 
 
 
 
But NOTE: ∇. (𝑝𝒏W) = 𝑝∇. 𝒏W + 𝒏W. ∇𝑝 = 	𝒏W. ∇𝑝 
 
 

This is nega0ve because 
we care about pressure 
in and 𝑑𝑺I  points out. 

This is the force the fluid 
element feels due to its 
environment. 

[ 𝑚𝑔 = 𝜌𝑔𝑉 ] 

Lagrangian deriva0ve. 
Momentum contained in 
volume V. 

“pressure force” “mg” 

∇. 𝒏W = 0, as 𝒏W is a unit vector.
 “pressure force”



Assuming the lump is small, ∫𝑑𝑉 → 𝛿𝑉: 
 

j
𝑑
𝑑𝑡 	𝜌𝒖	𝛿𝑉k	. 	𝒏

W = −𝛁	. (𝑝𝒏W	)𝛿𝑉 + 𝜌𝒈	. 𝒏W	𝛿𝑉 

j
𝑑
𝑑𝑡 	𝜌𝒖	𝛿𝑉k	. 	𝒏

W = −𝒏W. ∇𝑝	𝛿𝑉 + 𝜌𝒈	. 𝒏W	𝛿𝑉 

z
𝑑𝒖
𝑑𝑡 	

(𝜌	𝛿𝑉) +
𝑑(𝜌	𝛿𝑉)
𝑑𝑡 	𝒖{	. 	𝒏W = −𝒏W. ∇𝑝	𝛿𝑉 + 𝜌𝒈	. 𝒏W	𝛿𝑉 

 
 

j(𝜌	𝛿𝑉)
𝑑𝒖
𝑑𝑡 	. 	𝒏

W +
𝑑(𝜌	𝛿𝑉)
𝑑𝑡 	𝒖. 	𝒏W k 	= −𝒏W. ∇𝑝	𝛿𝑉 + 𝜌𝒈	. 𝒏W	𝛿𝑉 

(𝜌	𝛿𝑉)
𝑑𝒖
𝑑𝑡 	. 	𝒏

W 	= −𝒏W. ∇𝑝	𝛿𝑉 + 𝜌𝒈	. 𝒏W	𝛿𝑉 

∀, 𝒏W	𝑎𝑛𝑑	𝛿𝑉 
Hence,  

𝜌
𝑑𝒖
𝑑𝑡 		= −∇𝑝 + 𝜌𝒈 

 
We can generalise this to include any external force: 
 
 

𝜌
𝑑𝒖
𝑑𝑡 		= −∇𝑝 + 𝜌𝒈 + 𝑭!8+ 

 
What does this tell us? The momentum of a fluid element changes in response to pressure 
gradients and gravita0onal forces (and other external forces). 
 
∇𝑝 drives the fluid i.e. gradients in pressure. 
 
We can also find the Eulerian form of the EOM / conserva0on of momentum equa0on: 

𝑑𝑄
𝑑𝑡 =

𝜕𝑄
𝜕𝑡 + 𝒖. 𝛁𝑄 

−∇𝑝 + 𝜌𝒈 = 𝜌
𝜕𝒖
𝜕𝑡 + 𝜌(𝒖. 𝛁)𝒖 

 

𝜌
𝜕𝒖
𝜕𝑡 = −∇𝑝 + 𝜌𝒈 − 𝜌(𝒖. 𝛁)𝒖 

 
 
The momentum contained in a fixed grid cell changes as a result of pressure gradients, 
gravita0onal forces plus any imbalance in momentum in and out of a cell. 
 
 
 
 
 
 

= 0 because the mass of the lump is conserved. 

Lagrangian form of the EOM aka 
conserva0on of momentum. 

Eulerian form of the EOM aka 
conserva0on of momentum. 



Example: consider a flow 𝒖 = 𝑢8𝑥S along a pipe in the absence of gravity.  

 
−∇𝑝 = 𝜌 0𝒖

0+
+ 𝜌(𝒖. 𝛁)𝒖  

the component along the hose is: 
 
− 0R

08
= 𝜌 0D!

0+
+ 𝜌(𝑢8

0
08
+ 𝑢7

0
07
+ 𝑢:

0
0:
)𝑢8  

 
− 0R

08
= 𝜌 0D!

0+
+ 𝜌𝑢8

0D!
08

  

For an incompressible fluid, 0K
0+
= 0 so this equa0on becomes: 

 
𝜕(𝜌𝑢8)
𝜕𝑡 +

𝜕
𝜕𝑥 z

𝜌𝑢85

2 { = −
𝜕𝑝
𝜕𝑥 

 
 
 
 
Ram pressure is due to bulk mo0on of the fluid. 
 
Ques0on 5: Consider 𝒖(𝑥, 𝑦) = s𝑢8 , 𝑢7t = (𝑥, 0). Determine for a steady state, the 
varia0on in density and pressure, in the absence of gravity. 
 
Answer 5:  
Steady state therefore 0/

0+
= 0. 

 
Conserva0on of mass: 𝛁	. (𝜌𝒖) = 0. 

𝛁	. (𝜌𝒖) = 𝜌𝛁	. 𝒖 + 𝛁𝜌. 𝒖 = 0 

𝜌
𝜕𝑢8
𝜕𝑥 + 𝑢8

𝜕𝜌
𝜕𝑥 = 0 

𝜌
𝜕𝑥
𝜕𝑥 + 𝑥

𝜕𝜌
𝜕𝑥 = 0 

𝜌 + 𝑥
𝜕𝜌
𝜕𝑥 = 0 

𝑥
𝜕𝜌
𝜕𝑥 = −𝜌 

\
𝜕𝜌
𝜌 = −\𝑥𝜕𝑥 

ln 𝜌 = − ln 𝑥 + 𝑘(𝑦) 
 

ln 𝜌 = ln
𝑐(𝑦)
𝑥  

= 0 = 0 

Thermal pressure Rate of change of momentum 
Ram pressure 

k(y) is a constant, which may depend on y. 

c(y) is a new constant, formed by bringing 
k(y) into the logarithm i.e. rewri0ng the 
constants as: 

𝑘(𝑦) = ln	(𝑐(𝑦)) 



𝜌 =
𝑐(𝑦)
𝑥  

 
Conserva0on of momentum: 𝜌 0𝒖

0+
+ 𝜌(𝒖	. 𝛁)𝒖 = −𝛁𝑝 
𝜌(0) + 𝜌(𝒖	. 𝛁)𝒖 = −𝛁𝑝 

 

𝜌 j𝑢8
𝜕
𝜕𝑥 + 𝑢7

𝜕
𝜕𝑦k𝒖 = −𝛁𝑝 

𝜌 j𝑢8
𝜕
𝜕𝑥 + 𝑢7

𝜕
𝜕𝑦k

(𝑥𝒙W + 0𝒚W) = −
𝜕𝑝
𝜕𝑥 𝒙
W −

𝜕𝑝
𝜕𝑦 𝒚

W 

 
x-component: 

𝜌 j𝑢8
𝜕
𝜕𝑥 + 𝑢7

𝜕
𝜕𝑦k

(𝑥𝒙W) = −
𝜕𝑝
𝜕𝑥 𝒙
W 

𝜌 j𝑥
𝜕𝑥
𝜕𝑥k = −

𝜕𝑝
𝜕𝑥 

𝜌𝑥 = −
𝜕𝑝
𝜕𝑥 

And we know that 𝜌 = $(7)
8

 from the conserva0on of mass so: 
𝜕𝑝
𝜕𝑥 = −𝑐(𝑦) 

\𝑑𝑝 = −\𝑐(𝑦)𝑑𝑥 

𝑝 = −𝑐(𝑦)𝑥 + 𝐴(𝑦) 
y-component: 

𝜌 j𝑢8
𝜕
𝜕𝑥 + 𝑢7

𝜕
𝜕𝑦k 0𝒚

W = −
𝜕𝑝
𝜕𝑦 𝒚
W 

0 = −
𝜕𝑝
𝜕𝑦 

\𝑑𝑝 = \0	𝑑𝑦 

𝑝 = 𝐵(𝑥) 
 
So, combining,  

𝑝 = −𝐴𝑥 + 𝐵 
Where A and B are some posi0ve constants. 
Graphically: 
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= 0 

A(y) is constant which may depend on y. 

x 

p 

B Linear. NOTE 
that p can’t be 
nega0ve! 

x 

ρ 



Lecture 6 
 
The energy equa0on: 
From the second law of thermodynamics: 

𝑇	𝑑𝑆 = 	𝑑𝑄 = 𝑑𝑈 + 𝑝	𝑑𝑉 
 
 
 
 
 
We can write this for a small mass element: 

𝑇	𝛿𝑚	𝑑𝑠 = 	𝛿𝑚	𝑑𝑞 = 𝛿𝑚	𝑑𝑒 + 𝑝	𝛿𝑚	𝑑s1 𝜌0 t 
 
 
Where 𝑒 = R

(S=>)K
 (from 𝑝 = TK<

U
; 𝑝 = (𝑐R − 𝑐V)𝜌𝑇)  

And 𝛾 = 𝑐R/𝑐V i.e. the ra0o of specific heats. 
 
The small mass elements can then be cancelled: 

𝑇	𝑑𝑠 = 	𝑑𝑞 = 	𝑑𝑒 + 𝑝	𝑑s1 𝜌0 t 
And dividing by dt: 

𝑇
𝑑𝑠
𝑑𝑡 =

𝑑𝑞
𝑑𝑡 =

𝑑𝑒
𝑑𝑡 + 𝑝

𝑑s1 𝜌0 t
𝑑𝑡  

𝜌	𝑇
𝑑𝑠
𝑑𝑡 = 𝜌 ¦

𝑑𝑒
𝑑𝑡 + 𝑝

𝑑s1 𝜌0 t
𝑑𝑡 § = 𝜌

𝑑𝑞
𝑑𝑡 	≡ −𝐿 

 
 
So now we have: 
	

𝜌
𝑑𝑒
𝑑𝑡 + 𝜌	𝑝

𝑑s1 𝜌0 t
𝑑𝑡 = −𝐿	

 

𝜌
𝑑𝑒
𝑑𝑡 −

𝑝
𝜌
𝑑𝜌
𝑑𝑡 = −𝐿 

And using mass conserva0on:	.K
.+
= −𝜌(𝛁. 𝒖)	

	

𝜌
𝑑𝑒
𝑑𝑡 −

𝑝
𝜌 s−𝜌

(𝛁. 𝒖)t = −𝐿 

𝜌
𝑑𝑒
𝑑𝑡 + 𝑝𝛁. 𝒖 = −𝐿 

 
NOTE: if we have a closed system and 𝛁. 𝒖 = 0, either 𝜌 = 0 or .!

.+
= 0 (no change in 

internal energy). 
 

Heat exchange Internal 
energy 
change 

Work done by the fluid 

Volume of unit mass × 	𝛿𝑚 

𝑒 is the internal energy per unit mass 

The sum of sources and sinks 
of energy. This is the energy 
loss func0on. The nega0ve is a 
conven0on. 

The system is not necessarily closed, so it could gain or lose energy. 
But we’ll owen have closed ones, where L = 0 

(*) 



BUT! We wanted to include all energies and so far, we’ve just included the internal/thermal 
energies. We haven’t accounted for any mechanical/bulk energies. 
Examples of useful bulk energies are gravita0on, kine0c energy, magne0c energies etc. 
 
So now take:  	

𝒖	. j𝜌
𝑑𝒖
𝑑𝑡 + 𝛁𝑝 − 𝜌𝒈 = 𝟎k	

to get the mechanical energy: 

𝜌	𝒖	.
𝑑𝒖
𝑑𝑡 + 𝒖	. 𝛁𝑝 − 𝜌𝒖	. 𝒈 = 0 

And add this to (*). In adding them we have now combined both energy types (thermal 
energy and bulk energy) 
 

𝜌
𝑑𝑒
𝑑𝑡 + 𝑝𝛁. 𝒖 + 𝜌	𝒖	.

𝑑𝒖
𝑑𝑡 + 𝒖	. 𝛁𝑝 − 𝜌𝒖	. 𝒈 = −𝐿 

 
Simplifying using 𝑝𝛁. 𝒖 + 𝒖	. 𝛁𝑝 = 𝛁. (𝑝𝒖) and 𝒈 = −𝛁𝜓 

 

𝜌
𝑑𝑒
𝑑𝑡 + 𝜌	𝒖	.

𝑑𝒖
𝑑𝑡 + 𝛁.

(𝑝𝒖) + 𝜌𝒖	. 𝛁𝜓 = −𝐿 

And  𝜌 .!
.+
+ 𝜌	𝒖	. .𝒖

.+
= 𝜌 .!

.+
+ 𝜌 .

.+
UD

&

5
Y = 𝜌 .

.+
U𝑒 + D&

5
Y, leaving: 

 

𝜌
𝑑
𝑑𝑡 z𝑒 +

𝑢5

2 { + 𝛁.
(𝑝𝒖) + 𝜌𝒖	. 𝛁𝜓 = −𝐿 

 
 
 
But we can simplify this even further… 

No0ng that the 0me deriva0ve is a full one, and using 𝐴 = 𝑒 + D&

5
: 

𝜌
𝑑𝐴
𝑑𝑡 + 𝛁.

(𝑝𝒖) + 𝜌𝒖	. 𝛁𝜓 = −𝐿 

 
Where 𝜌 .L

.+
= .(KL)

.+
− 𝐴	 .K

.+
 and .K

.+
= −𝜌𝛁. 𝒖 so 

 

𝜌
𝑑𝐴
𝑑𝑡 =

𝑑(𝜌𝐴)
𝑑𝑡 − 𝐴	(−𝜌𝛁. 𝒖) =

𝑑(𝜌𝐴)
𝑑𝑡 + (𝐴𝜌)𝛁. 𝒖 = ©

𝜕(𝜌𝐴)
𝜕𝑡 + 𝒖. 𝛁(𝜌𝐴)ª + (𝐴𝜌)𝛁. 𝒖 

 	
leaving	𝜌 .L

.+
= 0(KL)

0+
+ 𝛁. s𝒖(𝐴𝜌)t 

so, we then find: 
𝜕(𝜌𝐴)
𝜕𝑡 + 𝛁. s𝒖(𝐴𝜌)t + 𝛁. (𝑝𝒖) + 𝜌𝒖	. 𝛁𝜓 = −𝐿 

𝜕
𝜕𝑡 z𝜌𝑒 + 𝜌

𝑢5

2 { + 𝛁. ©𝒖 z𝜌𝑒 + 𝜌
𝑢5

2 {ª + 𝛁.
(𝑝𝒖) + 𝜌𝒖	. 𝛁𝜓 = −𝐿 

 
 

EOM/ conserva0on of momentum 

Note that this is an energy per unit mass (specific energy) 

Unit check: 𝑘𝑔	𝑚=)𝑚5𝑠=5 = 𝑘𝑔𝑚=>𝑠=5 ie energy/volume 

U𝜌 D&

5
Y𝒖	: energy × velocity/volume = energy ×	0me/area ie an energy flux 



Trying to simplify even further… 
𝛁. (𝜌𝜓𝒖) = (𝜌𝜓)	𝛁. 𝒖 + 𝒖. 𝛁(𝜌𝜓) 

 
𝛁. (𝜌𝜓𝒖) = (𝜌𝜓)	𝛁. 𝒖 + 𝜓	𝒖. 𝛁𝜌 + 	𝜌	𝒖. 𝛁𝜓 

 
𝛁. (𝜌𝜓𝒖) = 𝜓(𝜌	𝛁. 𝒖 + 	𝒖. 𝛁𝜌) + 	𝜌	𝒖. 𝛁𝜓 

 
𝛁. (𝜌𝜓𝒖) = 𝜓(𝛁. (𝜌𝒖)) + 	𝜌	𝒖. 𝛁𝜓 

 

𝛁. (𝜌𝜓𝒖) = 𝜓 j−
𝜕𝜌
𝜕𝑡k + 	𝜌	𝒖. 𝛁𝜓 

And rearranging: 

𝜌	𝒖. 𝛁𝜓 = 𝜓
𝜕𝜌
𝜕𝑡 + 𝛁.

(𝜌𝜓𝒖)	 
 
Which we can put into the energy equa0on:	

𝜕
𝜕𝑡 z𝜌𝑒 + 𝜌

𝑢5

2 { + 𝛁. ©𝒖z𝜌𝑒 + 𝜌
𝑢5

2 {ª + 𝛁.
(𝑝𝒖) + 𝜓

𝜕𝜌
𝜕𝑡 + 𝛁.

(𝜌𝜓𝒖) = −𝐿 

𝜕
𝜕𝑡 z𝜌𝑒 + 𝜌

𝑢5

2 { + 𝜓
𝜕𝜌
𝜕𝑡 + 𝛁. ©𝒖z𝜌𝑒 + 𝜌

𝑢5

2 {ª + 𝛁.
(𝑝𝒖) + 𝛁. (𝜌𝜓𝒖) = −𝐿 

𝜕
𝜕𝑡 z𝜌𝑒 + 𝜌

𝑢5

2 { + 𝜓
𝜕𝜌
𝜕𝑡 + 𝛁. ©𝒖z𝜌𝑒 + 𝜌

𝑢5

2 + 𝑝 + 𝜌𝜓{ª = −𝐿 

Reminder: 𝛁. 𝒖 is a velocity emerging from a unit volume. 𝛁. (𝑎𝒖) is a rate of flow 
(amount/second) of “a” out of the unit volume. 
 
So, in steady state, the energy equa0on is: 
	

𝛁. ©𝒖z𝜌𝑒 + 𝜌
𝑢5

2 + 𝑝 + 𝜌𝜓{ª = −𝐿 

 
Where 𝜌𝑒 + 𝑝 = S

S=>
𝑝, and is the entropy. 

 
In this course we won’t deal with 0me dependence. 
 
Within some volume, the net effect (L) of the sources and sinks of energy is equal (in a 
steady state) to the energy through the surface i.e. 
 

~ −𝐿	𝑑𝑉
F

=� 𝒖	. z𝜌
𝑢5

2 + 𝜌𝑒 + 𝑝 + 𝜌𝜓{𝑑𝑺
G

 

 
Aside on equa0on of state: 
In general, 𝑝 = 𝑝(𝜌, 𝑇) and for an ideal gas: 𝑝 = 𝑛𝑘W𝑇 = 𝑚𝑘W𝑇/𝜌 where	𝜌 = 𝑚𝑛.	For a 
fully ionised hydrogen plasma, 𝑛 = 𝑛! + 𝑛R = 2𝑛! and 𝜌 = 𝑚R𝑛R +𝑚!𝑛! ≈ 𝑛!𝑚R 
 
n: number of par0cles per unit volume and m: mean par0cle mass 



Barotropic Equa0ons of state 𝑝(𝜌):  
This means that 𝑝 can only be wricen as a func0on of 𝜌, (e.g. for an ideal gas, 𝜌 must be 
related to 𝑇) 
 
Two op0ons: 

1. Isothermal: 𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 so 𝑝 ∝ 𝜌 
For this to be a good approxima0on we require: 

• Temperature for thermal equilibrium isn’t very sensi0ve to 
hea0ng/cooling. 

• In 0me-dependent cases, there is 0me for the system to reach this 
constant 𝑇, thermal equilibrium. 

2. Adiaba0c: 𝑝 = 𝑘𝜌S 
This is derived from the ideal gas laws on assump0on of no heat exchange (𝑑𝑄 = 0) 
i.e. adiaba0c. 

• A fluid element behaves adiaba0cally if 𝑘 is constant as the fluid elements 
proper0es change. 

• Isentropic fluid: one in which all elements have the same	𝑘. 
 
Summary of the 3 fluid equa0ons: 
 

1. Mass conserva0on 
𝜕𝜌
𝜕𝑡 + 𝜵	.

(𝜌𝒖)	 = 0 

 
2. Momentum conserva0on 

 

𝜌
𝑑𝒖
𝑑𝑡 		= −∇𝑝 + 𝜌𝒈 + 𝑭!8+ 

 
3. Energy conserva0on 

𝛁. ©z𝜌𝑒 + 𝜌
𝑢5

2 + 𝑝 + 𝜌𝜓{𝒖ª = −𝐿 

For a closed system, 𝐿 = 0. And in steady state, i.e. no E flowing in or out: E is conserved. 
 
Equa0ons of state can be wricen to describe systems, but we can only talk about them for 
collisional fluids (then pressure means something) and we use an equa0on which relates 𝑝 
to other thermodynamical proper0es. 
 
 
 

Lecture 7 
Vor0city and viscosity: 
Good website: earth.nullschool.net – see the weather real 0me. 
 
What is vor0city? (“angular momentum and all that”) 



Vor0city is the tendency of a fluid par0cle to rotate 
about an axis through its own centre of mass. 
NOTE: each fluid par0cle must rotate. 
 
Vor0city is just an expression on angular momentum 
in a fluid. 
 
 
 
 
 
Mathema0cally:    𝝎 = 𝛁 × 𝒖 
 
A rough analogy: the Ferris wheel has rota0onal mo0on, but the passengers don’t.  
⇒ the wheel has vor0city, but the people aren’t rota0ng about their own centre of mass, 
therefore they don’t. 
 
A parcel of fluid must be rota0ng about its own centre of mass to have vor0city. 
 
Example 1: solid body rota0on 

 
(e.g. a glass of water placed at the centre of a turntable) 

𝒖 = 𝛀 × 𝒓 
 
Our body is cylindrical and thus cylindrical polars will be 
most appropriate: 
𝑢R = Ω𝑟, 𝑢X = 𝑢: = 0 (only rota0ng “angularly”) 
 
This is a simple system; every parcel has the same vor0city. 
Calcula0ng: 

 
𝝎 = 𝛁 × 𝒖 − 𝛁 × (𝛀 × 𝒓) = (𝒓. 𝛁)𝛀 + (𝛁. 𝒓)𝛀 − (𝛁.𝛀)𝒓 − (𝛀	. 𝛁)𝒓 

 
(𝛁. 𝛀) = 0 because 𝛀 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 
𝛀 = Ω	𝒛S (angular velocity is along the direc0on of rota0on). 
 

Therefore, 𝝎 =	− j𝛀 0
0:
(𝑥, 𝑦)k + z𝛀U08

08
+ 07

07
Y{ 

𝝎 = 	2𝛀 for this system (solid body) 
 
c.f. specific angular momentum: 

𝑳 = 𝒓 × (𝛀 × 𝒓) = (𝒓. 𝒓)𝛀 − (𝒓. 𝛀)𝒓 = 𝑟5𝛀 
So      𝑳 = X&𝛀

𝟐
 

𝑳 lies along the same direc0on as the axis of rota0on and the angular velocity. 
 

= 0 = 0 = 0 



!! very important !! for solid body rota0on we find that vor0city is just twice the angular 
velocity. 

𝝎 = 2𝛀 
 
This is very similar to L which is related to vor0city. 
 
Solid body is the simplest type because in this case the fluid element doesn’t distort as it 
moves. 
 
Example 2: water down a plughole 
 
There is only a 𝑢[component: 

𝒖 = s𝑢X , 𝑢[ , 𝑢:t = j0,
𝑘
𝑟 , 0k 

 
Every fluid parcel moves in a circle, but with a different azimuthal velocity.  
 
In cylindrical coordinates: 

𝛁 × 𝒖 = z
1
𝑟 	
𝜕𝑢:
𝜕𝜙 −

𝜕𝑢[
𝜕𝑧 {𝒓

S + j
𝜕𝑢X
𝜕𝑧 −

𝜕𝑢:
𝜕𝑟 k𝝓

µ + j
1
𝑟
𝜕
𝜕𝑟 s𝑟𝑢[t −

1
𝑟
𝜕𝑢X
𝜕𝜙 k𝒛

S 

Here: 

𝛁 × 𝒖 = z−
𝜕𝑢[
𝜕𝑧 { 𝒓

S + ©
1
𝑟
𝜕
𝜕𝑟 s𝑟𝑢[tª 𝒛

S 

𝛁 × 𝒖 = ©
1
𝑟
𝜕
𝜕𝑟
(𝑘)ª 𝒛S 

 
𝜔X =	𝜔[ = 0 and 𝜔: = 0		∀𝒓	𝑒𝑥𝑐𝑒𝑝𝑡	𝒓 = 𝟎 

 
We have a singularity at 𝒓 = 𝟎. This is because we’ve ignored viscosity, leading to an 
undefined 𝜔. (singularity in the velocity field) 
 
Finding singulari0es usually means we’ve missed some important physics! 
 
For solid body rota0on: 

 
 
 
For true solid body rota0on, the marker is always aligned to the path 
traced out as it was ini0ally. 
 
 
 
 
 

 
But this is not what happens in example 2. What we see there is in fact solid body + shear. 



 
 
 
Recall: 𝑢[ =	

?
X
	so increasing 𝑟 means decreasing 𝑢[. The 

rota0ons add up to give a flow where the 0me to rotate is 
iden0cal as to trace the circle. 
⇒ no vor0city anywhere but the axis. 
 
 
 

 
So circular mo0on doesn’t necessarily imply vor0city! 

 
 
 
Rigid body rota0on: each parcel of fluid changes its 
orienta0on as it moves. 
 
 𝜔 ≠ 0 owen. 
 
 
 
 
 
 
Circula0on without rota0on: each parcel maintains the same 
orienta0on, even though it moves in a circle. 
 
 𝜔 = 0 owen. 
 
 
 

NOTE: we need to know the form of 𝒖 to know if vor0city exists. 
 
 
“Vortex sheets”: vor0city with no circular mo0on (macroscopically) 
 
Example 3: vortex sheets 
 
Shear flow: 𝒖 = 𝑢8(𝑦)𝒙W and 𝑢7 = 𝑢: = 0. 
 
Vor0city 𝝎 = 𝛁 × 𝒖 = U0D#

07
− 0D"

0:
Y 𝒙W + U0D!

0:
− 0D#

08
Y 𝒚W + U0D"

08
− 0D!

07
Y 𝒛S 

 
 

𝝎 = j−
𝜕𝑢8(𝑦)
𝜕𝑦 k 𝒛S 

= 0 = 0 = 0 = 0 = 0 



i.e. 𝝎 = U0,0, − 0D!
07
Y 

the larger 𝑢8(𝑦) is, the larger 𝜔 is. 
→ The large-scale flow is not at all circular. Macroscopically it’s linear but there is vor0city. 
→ A paddle wheel in this flow would rotate. 
 
What is viscosity? 
Viscosity allows us to get a solu0on for example 2 that is con0nuous and well behaved. 
Currently, our solu0on to example 2 is for an inviscid fluid so is missing physics. The viscosity 
clears up the discon0nuity. 

 
 
→ the faster fluid above plane AB drags the fluid 
below forwards (red arrow on the graph). 
→ the slower fluid below AB drags the fluid above 
backwards (purple). 
→ the forces ac0ng on AB are shown by the arrows 
(the forces are equal but opposite). They’re drawn 
on the side of the surface to which they act. 
 
Viscosity is responsible for this internal stress 
(𝐹/𝐴). 
 

These forces are being applied only because of viscosity. If we had an inviscid fluid, the 
elements above and below would be completely unaware of those elements around it. 
 
Viscosity tells us how “s0cky” the fluid par0cles are: 

 
For a Newtonian fluid (viscosity is independent of the velocity, though may vary with 𝑝,	𝑇), 
the force per unit area (stress) is:  
 

𝜏 = 𝜇
𝜕𝑢
𝜕𝑦 

 
𝜏 = 𝐹/𝐴 

 
Hence, for a given flow 𝒖, the higher the viscosity, the greater the stress. 
 
 
 

Coefficient of shear 
viscosity [kg/m/s] 



Lecture 8 
 
Now take a whole fluid element (not just a plane). The net 
viscous force is the difference of the viscous forces on both 
sides. 
 
 
For a Newtonian fluid, with viscosity not being a func0on of 
velocity: 

𝜏 = 𝜇
𝜕𝑢
𝜕𝑦 

 
So below 𝜏 = 𝜇 0D

07
º
7

 and above 𝜏 = 𝜇 0D
07
º
71*7

 

 
The viscous force per element of volume then is: 
 

𝐹 = 𝜏	𝐴 
Δ𝐹 = Δ𝜏	𝛿𝑥𝛿𝑧 

Δ𝐹 = z𝜇
𝜕𝑢
𝜕𝑦¼71*7

− 	𝜇
𝜕𝑢
𝜕𝑦¼7

{ 	𝛿𝑥𝛿𝑧 

 
--- 
Using the defini0on of differen0a0on: 
 

𝑑𝑄
𝑑𝑥 ≡ lim

*8→-
8
𝑄(𝑥 + 𝛿𝑥) − 𝑄(𝑥)

𝛿𝑥 < 

 

Hence z𝜇 0D
07
º
71*7

− 	𝜇 0D
07
º
7
{ = 𝜇 U 0

07
U0D
07
Y 	𝛿𝑦Y 

--- 
 
Here, we’ve treated 𝜇 as a constant. It technically isn’t however it owen acts as one, 
especially locally. 
 

Δ𝐹 = 𝜇 j
𝜕
𝜕𝑦 j

𝜕𝑢
𝜕𝑦k 	𝛿𝑦k 	𝛿𝑥𝛿𝑧 

Δ𝐹 = 𝜇 z
𝜕5𝑢
𝜕𝑦5	{ 𝑉 

So, for the y direc0on 
Δ𝐹
𝑉 = 𝐹F = 𝜇 z

𝜕5𝑢
𝜕𝑦5	{. 

 
By analogy we can get similar results for the x and z direc0ons. 

𝐹F = 𝜇 z
𝜕5𝑢
𝜕𝑥5	{ 



𝐹F = 𝜇 z
𝜕5𝑢
𝜕𝑧5 	{ 

Combining these results: 

𝐹F = 𝜇 z
𝜕5𝑢
𝜕𝑥5 +

𝜕5𝑢
𝜕𝑦5 +

𝜕5𝑢
𝜕𝑧5 	{ 

𝑭𝑽 = 𝜌𝜈	∇5𝒖 
 
For an incompressible fluid, with 𝜈 = 𝜇/𝜌 and is called the “kinema0c viscosity” [m2/s]. 
 
Equa0on of mo0on: 
Using this equa0on, we can alter the EOM to include viscosity: 

𝜕𝒖
𝜕𝑡 +

(𝒖	. 𝛁)𝒖 = 	−
1
𝜌𝛁𝑝 + 𝒈 + 𝜈∇

5𝒖 

 
Numerically, it is very difficult to solve/evaluate 𝜈∇5𝒖. 
Every 0me we differen0ate, we lose informa0on, plus 𝜈 is owen very small. Due to these 
things, it can be difficult to evaluate efficiently or accurately. 
 
So some0mes we don’t want to include this term. When should we put this term into the 
EOM, and when is it safe to ignore it? 
 
Reynold’s number: 
Take the steady state EOM with 𝒈 = 𝟎: 

(𝒖	. 𝛁)𝒖 = 	−
1
𝜌𝛁𝑝 + 𝜈∇

5𝒖 

 
 
 
From this, we can define the Reynold’s number as the ra0o of the iner0al term to the 
viscous terms. 

𝑅 =
(𝒖	. 𝛁)𝒖
𝜈∇5𝒖  

And we calculate it using dimensional analysis: 
 

𝑅 =
(𝒖	. 𝛁)𝒖
𝜈∇5𝒖  

 

𝑅 =
𝑢𝐿
𝜈  

 
There are two extreme cases here: 

• 𝑅 ≫ 1. In this case the iner0al term dominates, and viscosity of the fluid is 
unimportant. Therefore, we may ignore it. Looking at the equa0on we see that this 
occurs for large u or L (length-scales) 

• 𝑅~1. In this case the viscosity is important and is on the same order as the iner0al 
term. Hence, we cannot ignore it. 
 

Iner0al term viscous term 

 ~	𝑢5/𝐿 

 ~	𝜈𝑢/𝐿5 



So, length-scales are very important, a small insect flying around the room with air 
condi0oning experiences a more viscous fluid than a human. 
 
Hence, bees fly through a low Reynold’s number (viscous fluid) whilst aeroplanes fly through 
a flow with a high Reynold’s number (less viscous). However, aeroplanes do experience 
some viscosity at the boundary layer. 

 
Over a length-scale 𝛿, the flow slows down to zero at the boundary layer. Hence, there must 
be some viscosity. 
 
If the aircraw is well designed, we should have a thin smooth boundary layer – as this 
prevents the breaking up of the boundary layer. When the boundary layer breaks up, it shed 
vortexes which makes the movement inefficient. 
 
We want to know how this boundary layer behaves. 
 
Boundary layer thickness: 

• Intui0vely we expect the thickness to depend on viscosity of the fluid. 
 

(𝒖	. 𝛁)𝒖 ≈ −
1
𝜌𝛁𝑝 

Which has dimensions:	

|(𝒖	. 𝛁)𝒖|~
𝑢5

𝐿  

 
 
This is for within the body of the flow. Within the boundary layer, however, the viscous term 
becomes important and so it has dimensions: 
 

(𝒖	. 𝛁)𝒖 ≈ 𝜈∇5𝒖 

|(𝒖	. 𝛁)𝒖|~
𝑢5

𝐿 ~
𝜈𝑢
𝐿5 =

𝜈𝑢
𝛿5  

 
For the viscous term to compete with the “large-scale” iner0al term, these two must be 
equal: 

𝑢5

𝐿 ~
𝜈𝑢
𝛿5  

𝛿
𝐿 ~j

𝑢𝐿
𝜈 k

=>5
=

1
√𝑅

 

Which tells us that 



Low viscosity →	high Reynold’s number → thin boundary layer 
 
Shark skin: 

 
This prevents the boundary layer from breaking up. 
Water is pulled back down before it can escape, forcing 
the boundary layer to reacach. This makes their mo0on 
more efficient as no vortexes are shed. 
 

Note: viscosity is important because without it we can’t fully understand vor0city. 
 
Bernoulli’s equa0on: 
This is really just an expression of energy conserva0on! 
 
We will leave out viscosity and find that we cannot explain things… 
The EOM without viscosity is 

𝜕𝒖
𝜕𝑡 +

(𝒖	. 𝛁)𝒖 = 	−
1
𝜌𝛁𝑝 + 𝒈 − 𝛁𝜓. 

Now, for a barotropic equa0on of state 𝑝(𝜌): 
1
𝜌𝛁𝑝 =

1
𝜌	j

𝜕𝑝
𝜕𝑥 𝒙
W +

𝜕𝑝
𝜕𝑦 𝒚
W +

𝜕𝑝
𝜕𝑧 𝒛
Sk 

=
1
𝜌
𝜕𝑝
𝜕𝜌	j

𝜕𝜌
𝜕𝑥 𝒙
W +

𝜕𝜌
𝜕𝑦 𝒚

W +
𝜕𝜌
𝜕𝑧 𝒛
Sk 

=
1
𝜌
𝜕𝑝
𝜕𝜌𝛁𝜌 

=
𝜕
𝜕𝜌 À\

𝜕𝑝
𝜕𝜌
𝑑𝑝
𝜌 	Á 𝛁𝜌 

=
𝜕
𝜕𝜌 À\

𝑑𝑝
𝜌 	Á 𝛁𝜌 

= 𝛁 À\
𝑑𝑝
𝜌 	Á 

 
So… 

𝜕𝒖
𝜕𝑡 +

(𝒖	. 𝛁)𝒖 = 	−𝛁 À\
𝑑𝑝
𝜌 	 + 𝜓Á. 

 
Using the vector iden0ty: 

(𝒖	. 𝛁)𝒖 = 𝛁z
𝑢5

2 { − 𝒖 × (𝛁 × 𝒖) 

We find: 
𝜕𝒖
𝜕𝑡 + 𝛁z

𝑢5

2 { − 𝒖 × (𝛁 × 𝒖) = 	−𝛁 À\
𝑑𝑝
𝜌 	 + 𝜓Á 

𝜕𝒖
𝜕𝑡 − 𝒖 × 𝝎 = −𝛁 À\

𝑑𝑝
𝜌 	 + 𝜓Á − 𝛁z

𝑢5

2 { 

 
 



𝜕𝒖
𝜕𝑡 − 𝒖 × 𝝎 = −𝛁 Â

𝑢5

2 + \
𝑑𝑝
𝜌 	 + 𝜓Ã 

 
This is the general form of the Bernoulli equa0on without viscosity. This form isn’t very 
useful though… 
This equa0on is s0ll just a rate of change of momentum = sum of forces. We’ve only done 
some algebra; the physics hasn’t changed! 
 
Two special cases of the equa0on: 
1. take a steady state and dot product with u: 

𝒖. 𝛁 Â
𝑢5

2 + \
𝑑𝑝
𝜌 	 + 𝜓Ã = 0 

𝒖. 𝛁𝐻 = 0 
Where 𝐻 ≡ D&

5
+ ∫ .R

K
	 + 𝜓 and is “Bernoulli’s constant” which is constant along streamlines. 

 
If we move in that direc0on at that velocity,	𝛁𝐻 is the change in	𝐻	that I see. Here that is 
zero! It is conserved in my direc0on of mo0on. It may differ between streamlines, but once 
you’re on one it doesn’t change – an expression of conserva0on of energy. 
 

• The mechanical energy for a fluid element along a specific streamline is the same 
along its path. 

• This form applies for a steady state (path and streamline are the same here). 
 
2. if the flow is steady and the vor0city is zero (irrota0onal flow) then 𝛁𝐻 = 0. 

• H is constant everywhere i.e. the same on every streamline (every streamline has the 
same energy). 

• All the parcels of fluid not only conserve their own total mechanical energy H, but 
they also have the same H as all their neighbours. This is an equalising flow. 

 
Example 1: for an incompressible fluid, where 
density is uniform: 
 
Since density is constant: 

\
𝑑𝑝
𝜌 	 =

1
𝜌\𝑑𝑝 =

𝑝
𝜌 

𝐻 =
𝑢5

2 + \
𝑑𝑝
𝜌 	 + 𝜓 =

𝑢5

2 +
𝑝
𝜌 + 𝜓 

For a parcel of fluid following the doced line: 
H must be conserved 

0 +
𝑝+NR
𝜌 + 𝜓+NR =

𝑢5

2 +
𝑝BN++NM
𝜌 + 𝜓BN++NM 

Pressure hasn’t changed so: 

𝜓+NR =
𝑢5

2 + 𝜓BN++NM 

𝑢5

2 = 𝜓+NR − 𝜓BN++NM = 𝑔ℎ 

Specific energy terms. 



𝑢 = Å2𝑔ℎ 
But we have a problem here. Why doesn’t the fluid reach the same height as it fell from? 
Answer: we haven’t considered air or water fric0on. We’ve missed out viscosity! 
 
 
Example 2: if we blow between two pieces of paper, where the 
velocity is large, the pressure is small (as you’re blowing the air 
away). This pressure difference between the top and bocom 
of the paper causes the two pieces to be pulled together. 

𝐻 =
𝑢5

2 +
𝑝
𝜌 

 
 
Example 3: why does the shower curtain cling to you? 
 
 
The warm air rises, causing changes in the pressure and the 
curtain is pushed against you. 
 
If we take the curl of Bernoulli’s equa0on: 

𝛁 × j
𝜕𝒖
𝜕𝑡 − 𝒖 × 𝝎k = 𝛁 × z−𝛁 Â

𝑢5

2 + \
𝑑𝑝
𝜌 	 + 𝜓Ã{ = 𝟎 

𝜕(𝛁 × 𝒖)
𝜕𝑡 − 𝛁 × (𝒖 × 𝝎) = 𝟎 
𝜕𝝎
𝜕𝑡 − 𝛁 × (𝒖 × 𝝎) = 𝟎 

𝜕𝝎
𝜕𝑡 = 𝛁 × (𝒖 × 𝝎) 

 
This equa0on tells us that if ini0ally the vor0city Is zero, then it must always be zero i.e. we 
cannot create vor0city. 
We know that this is factually incorrect – we can produce vor0city from nothing. This 
mistake is because we have not accounted for viscosity. 
 
If we repeat the above steps but this 0me include viscosity: 

𝛁 × j
𝜕𝒖
𝜕𝑡 − 𝒖 × 𝝎k = 𝛁 × z−𝛁 Â

𝑢5

2 + \
𝑑𝑝
𝜌 	 + 𝜓 − 𝜈𝛁. 𝒖Ã{ 

𝜕(𝛁 × 𝒖)
𝜕𝑡 − 𝛁 × (𝒖 × 𝝎) = 𝛁 × z−𝛁 Â

𝑢5

2 +\
𝑑𝑝
𝜌 	 + 𝜓Ã{ + 𝛁 × s−𝛁

(−𝜈𝛁. 𝒖)t 

𝜕𝝎
𝜕𝑡 − 𝛁 × (𝒖 × 𝝎) = 𝛁 × (𝜈∇5𝒖) 
𝜕𝝎
𝜕𝑡 = 𝛁 × (𝒖 × 𝝎) + 𝜈𝛁 × (∇5𝒖) 
𝜕𝝎
𝜕𝑡 = 𝛁 × (𝒖 × 𝝎) + 𝜈∇5(𝛁 × 𝒖) 

 

Helmholtz equa0on. 



𝜕𝝎
𝜕𝑡 = 𝛁 × (𝒖 × 𝝎) + 𝜈∇5𝝎 

 
Eulerian: if I stand s0ll, the vor0city changes in 0me due to these two terms. 
 
𝛁 × (𝒖 × 𝝎): advec0ve term - carries vortex lines around. 

- describes how vortex lines are pushes around by the flow, they can be stretched and 
twisted (by the velocity). 

 
 
𝜈∇5𝝎: diffusion term – explains how vor0city is created. 

- This term describes how vor0city is dissipated by viscosity. 
 

 
--- 
Aside on diffusion equa0ons: 
How does the concentra0on of a drop of ink change with 0me due to 𝜕5/𝜕𝑥5 when added 
to a cup of water? 
Big changes in spa0al gradients cause fast evolu0on in 0me. 
 
 

𝜕𝝎
𝜕𝑡 ≈ 𝜈∇5𝝎 

Dimensions: 
𝜔
𝑡 ≈

𝜈𝜔
𝐿5  

𝑡 ≈
𝐿5

𝜈  

--- 
 
Ques0on 6: Write down H for (a) adiaba0c and (b) isothermal equa0ons of state. 
 
Answer 6: 

(a) 𝑑𝑄 = 0, 𝑝 = 𝑘𝜌S 
 

𝐻 =
𝑢5

2 + 𝜓 +\
𝑑𝑝
𝜌  

𝜕𝑝
𝜕𝜌 = 𝑘	𝛾	𝜌S=> = 𝑘	𝛾

𝜌S

𝜌 =
𝑝
𝜌 𝛾 

Therefore  

\
𝑑𝑝
𝜌 = \𝑝

𝛾
𝜌5 𝑑𝜌 = 𝛾	𝑘 \𝜌S=5𝑑𝜌 = 𝛾

𝑘
𝛾 − 1𝜌

S=> = j
𝛾

𝛾 − 1k
𝑝
𝜌	 

𝐻 =
𝑢5

2 + 𝜓 + j
𝛾

𝛾 − 1k
𝑝
𝜌 

 
 

(b) 𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑝 = ?K<
M

 

What 
the flow 
does to 
vor0city. 

What 
viscosity 
does to 
vor0city. 



𝑑𝑝
𝑑𝜌 =

𝑘𝑇
𝑚  

\𝑑𝑝/𝜌 =
𝑘𝑇
𝑚 \𝑑𝜌/𝜌 =

𝑘𝑇
𝑚 𝑙𝑛𝜌 = 𝑐#5𝑙𝑛𝜌 

Hence, 	

𝐻 =
𝑢5

2 + 𝜓 + 𝑐#5𝑙𝑛𝜌 

 
 


